题目内容

【题目】为回馈顾客,某商场拟通过摸球兑奖的方式对位顾客进行奖励,规定:每位顾客从一个装有个标有面值的球的袋中一次性随机摸出个球,球上所标的面值之和为该顾客所获的奖励额.

(1)若袋中所装的个球中有个所标的面值为元,其余个均为元,求顾客所获的奖励额的分布列及数学期望;

(2)商场对奖励总额的预算是元,并规定袋中的个球只能由标有面值为元和元的两种球组成,或标有面值元和元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡.请对袋中的个球的面值给出一个合适的设计,并说明理由.

【答案】1)(;(40;(2)选择方案(20,20,40,40.

【解析】

试题(1)()摸出2个球共有种方法,由题意得摸出2个球中一个为面值为50元,另一个为10元的,所以有种方法,所求概率为;()先确定随机变量取法:20,60.再分别求对应概率,列表得分布列,最后根据公式求数学期望(2)根据商场的预算,每个顾客的平均奖励额为60元,所以数学期望为60.因此只能有两个方案:(10,10,50,50),(20,20,40,40),这两个方案的数学期望皆为60,为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,即方差要尽可能小,计算两者方差得选择方案(20,20,40,40.

试题解析:(1)设顾客所获的奖励额为X

)依题意,得PX60)=

即顾客所获的奖励额为60元的概率为.

)依题意,得X的所有可能取值为20,60.

PX60)=PX20)==

X的分布列为

X

20

60

P



所以顾客所获的奖励额的期望为

EX)=20×60×40(元).

2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.

对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.

以下是对两个方案的

对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为

X1

20

60

100

P




X1的期望为EX1)=20×60×100×60

X1的方差为DX1)=(20602×+(60602×+(100602×.

对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为

X2

40

60

80

P




X2的期望为EX2)=40×60×80×60

X2的方差为DX2)=(40602×+(60602×+(80602×.

由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网