题目内容
【题目】函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若其图象向右平移 个单位后得到的函数为奇函数,则函数f(x)的图象( )
A.关于点 对称
B.关于x= 对称
C.关于点( ,0)对称
D.关于x= 对称
【答案】A
【解析】解:由函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,可得 =π, 求得ω=2.
把f(x)的图象向右平移 个单位后得到的图象对应函数为y=sin[2(x﹣ )+φ]=sin(2x+φ﹣ ),
再根据得到的函数为奇函数,可得φ﹣ =kπ,k∈z,即φ=kπ+ ,故φ=﹣ ,f(x)=sin(2x﹣ ).
令x= ,求得f(x)=0,可得函数f(x)的图象关于点 对称,
故选:A.
【题目】为了调查喜爱运动是否和性别有关,我们随机抽取了50名对象进行了问卷调查得到了如下的2×2列联表:
喜爱运动 | 不喜爱运动 | 合计 | |
男性 | 5 | ||
女性 | 10 | ||
合计 | 50 |
若在全部50人中随机抽取2人,抽到喜爱运动和不喜爱运动的男性各一人的概率为 .
附:
P(K2≥k) | 0.05 | 0.01 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2=
(1)请将上面的2×2列联表补充完整;
(2)能否在犯错误的概率不超过0.001的前提下认为喜爱运动与性别有关?说明你的理由..
【题目】某学校为了了解该校学生对于某项运动的爱好是否与性别有关,通过随机抽查110名学生,得到如下的列联表:
喜欢该项运动 | 不喜欢该项运动 | 总计 | |
男 | 40 | 20 | 60 |
女 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由公式,算得
附表:
0.025 | 0.01 | 0.005 | |
5.024 | 6.635 | 7.879 |
参照附表,以下结论正确的是( )
A. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B. 在犯错语的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
C. 有99%以上的把握认为“爱好该项运动与性别无关”
D. 有99%以上的把握认为“爱好该项运动与性别有关”