题目内容
在△ABC中,角A、B、C的对边分别为a,b,c,
=
.
(Ⅰ)求角B的大小;
(Ⅱ)求函数f(x)=cosx•cos(x+B)(x∈[0,
])的值域.
tanB |
tanC |
2a-c |
c |
(Ⅰ)求角B的大小;
(Ⅱ)求函数f(x)=cosx•cos(x+B)(x∈[0,
π |
2 |
(Ⅰ)∵
=
,而sinC>0
∴sinBcosC=2sinAcosB-cosBsinC,
∴sin(B+C)=2sinAcosB=sinA
∴cosB=
,∴B=
;
(Ⅱ)f(x)=
cos2x-
sinxcosx
=
-
sin2x
=
cos(2x+
)+
∵2x+
∈[
,
π],
∴-1≤cos(2x+
)≤
,
∴f(x)的值域为[-
,
].
sinBcosC |
sinCcosB |
2sinA-sinC |
sinC |
∴sinBcosC=2sinAcosB-cosBsinC,
∴sin(B+C)=2sinAcosB=sinA
∴cosB=
1 |
2 |
π |
3 |
(Ⅱ)f(x)=
1 |
2 |
| ||
2 |
=
1+cos2x |
4 |
| ||
4 |
=
1 |
2 |
π |
3 |
1 |
4 |
∵2x+
π |
3 |
π |
3 |
4 |
3 |
∴-1≤cos(2x+
π |
3 |
1 |
2 |
∴f(x)的值域为[-
1 |
4 |
1 |
2 |
练习册系列答案
相关题目