题目内容
【题目】若a、b、c∈R,写出命题“若ac<0,则ax2+bx+c=0有两个不相等的实数根”的逆命题、否命题、逆否命题,并判断这三个命题的真假.
【答案】解:逆命题“若ax2+bx+c=0(a、b、c∈R)有两个不相等的实数根,则ac<0”是假命题,
如当a=1,b=﹣3,c=2时,方程x2﹣3x+2=0有两个不等实根x1=1,x2=2,但ac=2>0
否命题“若ac≥0,则方程ax2+bx+c=0(a、b、c∈R)没有两个不相等的实数根”是假命题.
这是因为它和逆命题互为逆否命题,而逆命题是假命题
逆否命题“若ax2+bx+c=0(a、b、c∈R)没有两个不相等的实数根,则ac≥0”是真命题.
因为原命题是真命题,它与原命题等价
【解析】本题考查的知识点是四种命题及其真假关系,解题的思路:认清命题的条件p和结论q,然后按定义写出逆命题、否命题、逆否命题,最后判断真假.
【考点精析】本题主要考查了四种命题的真假关系的相关知识点,需要掌握一个命题的真假与其他三个命题的真假有如下三条关系:(原命题 逆否命题)①、原命题为真,它的逆命题不一定为真;②、原命题为真,它的否命题不一定为真;③、原命题为真,它的逆否命题一定为真才能正确解答此题.
练习册系列答案
相关题目