题目内容

【题目】如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运行的速度为130 m/min,山路AC长为1260 m,经测量,cos A=,cos C=

(1)求索道AB的长;

(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?

【答案】(1)索道AB的长为1 040 m;(2)t= (min)时,甲、乙两游客距离最短.

【解析】试题分析:(1)在△ABC中,由cosAcosC可得sinA根和sinC,从而得sinB,由正弦定理,可得AB

(2)假设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130tm,由余弦定理得d2=200(37t2-70t+50),结合二次函数即可得最值.

试题解析:

(1)在△ABC中,因为cos A=,cos C=

所以sin A=,sin C=.

从而sin B=sin[π-(A+C)]=sin(A+C)

=sin Acos C+cos Asin C=××.

由正弦定理,得AB=×sin C=×=1 040(m).

所以索道AB的长为1 040 m.

(2)假设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130t m

所以由余弦定理得

d2=(100+50t)2+(130t)2-2×130t×(100+50t)×=200(37t2-70t+50),

因0≤t≤,即0≤t≤8,

故当t= (min)时,甲、乙两游客距离最短.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网