题目内容

已知锐角△ABC中的三个内角分别为A、B、C.
(1)设
BC
CA
=
CA
AB
,∠A=
12
,求△ABC中∠B的大小;
(2)设向量
s
=(2sinC,  -
3
)
t
=(cos2C,  2cos2
C
2
-1)
,且
s
t
,若sinA=
2
3
,求sin(
π
3
-B)
的值.
分析:(1)利用
BC
CA
=
CA
AB
,推出
AB
2
-
.
BC
2=0,得到△ABC为等腰三角形. 再由∠A=
12
,能求出∠B=
π
6

(2)利用
s
t
,求出C的值,通过sinA=
2
3
,求出cosA,然后利用两角差的正弦函数求sin(
π
3
-B)的值.
解答:解:(1)因为
BC
CA
=
CA
AB

所以
CA
•(
BC
-
AB
)=0

AB
+
BC
+
CA
=0,
所以
CA
=-(
AB
+
BC
),所以-(
AB
+
BC
)•(
BC
-
AB
)=0,
所以
AB
2
-
.
BC
2=0,
所以|
AB
|2=|
BC
|2,即|
AB
|=|
BC
|,
故△ABC为等腰三角形. 
因为∠A=
12
,所以∠B=
1
2
(π-
12
)
=
24

(2)∵
s
=(2sinC,  -
3
)
t
=(cos2C,  2cos2
C
2
-1)
,且
s
t

∴2sinC(2cos2
C
2
-1)=-
3
cos2C,
∴sin2C=-
3
cos2C,即tan2C=-
3

∵C为锐角,∴2C∈(0,π),
∴2C=
3
,∴C=
π
3

∴A=
3
-B,
∴sin(
π
3
-B)=sin[(
3
-B)-
π
3
]=sin(A-
π
3
).
又sinA=
2
3
,且A为锐角,∴cosA=
5
3

∴sin(
π
3
-B)=sin(A-
π
3

=sinAcos
π
3
-cosAsin
π
3

=
2
3
×
1
2
-
5
3
×
3
2
=
2-
15
6
点评:本题考查向量的数量积与向量的平行的应用,两角和与差的三角函数,注意角的范围的确定是解题的关键,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网