题目内容
【题目】“”是“对任意的正数, ”的( )
A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件
【答案】A
【解析】分析:根据基本不等式,我们可以判断出“”?“对任意的正数x,2x+≥1”与“对任意的正数x,2x+≥1”?“a=
”真假,进而根据充要条件的定义,即可得到结论.
解答:解:当“a=”时,由基本不等式可得:
“对任意的正数x,2x+≥1”一定成立,
即“a=”?“对任意的正数x,2x+≥1”为真命题;
而“对任意的正数x,2x+≥1的”时,可得“a≥”
即“对任意的正数x,2x+≥1”?“a=”为假命题;
故“a=”是“对任意的正数x,2x+≥1的”充分不必要条件
故选A
【题型】单选题
【结束】
11
【题目】如图,四棱锥中, 平面,底面为直角梯形, , , ,点在棱上,且,则平面与平面的夹角的余弦值为( )
A. B. C. D.
【答案】B
【解析】
以B为坐标原点,分别以BC、BA、BP所在直线为x、y、z轴,
建立空间直角坐标系,
则,
∴
设平面BED的一个法向量为,
则,
取z=1,得,
平面ABE的法向量为,
∴.
∴平面ABE与平面BED的夹角的余弦值为.
故选B.
练习册系列答案
相关题目