题目内容

【题目】”是“对任意的正数 ”的( )

A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件

【答案】A

【解析】分析:根据基本不等式,我们可以判断出”?“对任意的正数x2x+≥1”对任意的正数x2x+≥1”?“a=

真假,进而根据充要条件的定义,即可得到结论.

解答:解:当“a=时,由基本不等式可得:

对任意的正数x2x+≥1”一定成立,

“a=”?“对任意的正数x2x+≥1”为真命题;

对任意的正数x2x+≥1时,可得“a≥

对任意的正数x2x+≥1”?“a=为假命题;

“a=对任意的正数x2x+≥1充分不必要条件

故选A

型】单选题
束】
11

【题目】如图,四棱锥中, 平面,底面为直角梯形, ,点在棱上,且,则平面与平面的夹角的余弦值为( )

A. B. C. D.

【答案】B

【解析】

B为坐标原点,分别以BCBABP所在直线为xyz,

建立空间直角坐标系,

设平面BED的一个法向量为

z=1,

平面ABE的法向量为

.

平面ABE与平面BED的夹角的余弦值为.

故选B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网