题目内容
【题目】若曲线y=e﹣x上点P处的切线平行于直线2x+y+1=0,则点P的坐标为 .
【答案】(﹣ln2,2)
【解析】解:设P(x,y),则y=e﹣x ,
∵y′=﹣e﹣x , 在点P处的切线与直线2x+y+1=0平行,
令﹣e﹣x=﹣2,解得x=﹣ln2,
∴y=e﹣x=2,故P(﹣ln2,2).
所以答案是:(﹣ln2,2).
练习册系列答案
相关题目
题目内容
【题目】若曲线y=e﹣x上点P处的切线平行于直线2x+y+1=0,则点P的坐标为 .
【答案】(﹣ln2,2)
【解析】解:设P(x,y),则y=e﹣x ,
∵y′=﹣e﹣x , 在点P处的切线与直线2x+y+1=0平行,
令﹣e﹣x=﹣2,解得x=﹣ln2,
∴y=e﹣x=2,故P(﹣ln2,2).
所以答案是:(﹣ln2,2).