题目内容
【题目】如图,在底面为平行四边形的四棱锥O﹣ABCD中,BC⊥平面OAB,E为OB中点,OA=AD=2AB=2,OB= .
(1)求证:平面OAD⊥平面ABCD;
(2)求二面角B﹣AC﹣E的余弦值.
【答案】
(1)证明:∵BC⊥平面OAB,OA平面OAB,
∴OA⊥BC,
又OA=2AB=2,OB= ,
在△OAB中,OA2+AB2=OB2,
∴OA⊥AB,
∴OA⊥平面ABCD,
又OA平面OAD,∴平面OAD⊥平面ABCD
(2)解:由(1)知OA,AB,AD两两垂直,
以A为坐标原点,分别以AD,AB,AO所在直线为x轴,y轴,z轴,建立空间直角坐标系A﹣xyz,
则A(0,0,0),C(2,1,0),O(0,0,2),B(0,1,0),E(0, ,1),
=(2,1,0), =(0, ,1),
设平面AEC的法向量 =(x,y,z),
则 ,取x=1,得 =(1,﹣2,1),
又平面ABC的法向量 =(0,0,1),
cos< >= = = ,
∴二面角B﹣AC﹣E的余弦值为 .
【解析】(1)由已知得OA⊥BC,OA⊥AB,从而OA⊥平面ABCD,由此能证明平面OAD⊥平面ABCD;(2)以A为坐标原点,分别以AD,AB,AO所在直线为x轴,y轴,z轴,建立空间直角坐标系A﹣xyz,利用向量法能求出二面角B﹣AC﹣E的余弦值.
【考点精析】解答此题的关键在于理解平面与平面垂直的判定的相关知识,掌握一个平面过另一个平面的垂线,则这两个平面垂直.
练习册系列答案
相关题目