题目内容
12.已知矩阵A的逆矩阵A-1=$[\begin{array}{l}{\frac{\sqrt{2}}{2}}&{\frac{\sqrt{2}}{2}}\\{-\frac{\sqrt{2}}{2}}&{\frac{\sqrt{2}}{2}}\end{array}]$.求曲线xy=1在矩阵A所对应的变换作用下所得的曲线方程.分析 根据矩阵变换的特点代入计算即可.
解答 解:设xy=1上任意一点(x,y)在矩阵A所对应的变换作用下对应的点(x′,y′),
则$[\begin{array}{l}{x}\\{y}\end{array}]$=A-1$[\begin{array}{l}{x′}\\{y′}\end{array}]$=$[\begin{array}{l}{\frac{\sqrt{2}}{2}}&{\frac{\sqrt{2}}{2}}\\{-\frac{\sqrt{2}}{2}}&{\frac{\sqrt{2}}{2}}\end{array}]$$[\begin{array}{l}{x′}\\{y′}\end{array}]$,
由此得$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}(x′+y′)}\\{y=\frac{\sqrt{2}}{2}(y′-x′)}\end{array}\right.$,
代入方程xy=1,得y′2-x′2=2.
所以xy=1在矩阵A所对应的线性变换作用下的曲线方程为y2-x2=2.
点评 本题考查矩阵的变换等知识,注意解题方法的积累,属于基础题.
练习册系列答案
相关题目
17.若a∈R,则“a=1”是“直线x+y+a=0与圆x2+y2=1相交”的( )
A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
4.若不等式(x-a)2+(x-lna)2>m对任意x∈R,a∈(0,+∞)恒成立,则实数m的取值范围是( )
A. | (-∞,$\frac{1}{2}$) | B. | (-∞,$\frac{\sqrt{2}}{2}$) | C. | (-∞,$\sqrt{2}$) | D. | (-∞,2) |