题目内容
【题目】在一张足够大的纸板上截取一个面积为3600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中a≥b.
(1)当a=90时,求纸盒侧面积的最大值;
(2)试确定a,b,x的值,使得纸盒的体积最大,并求出最大值.
【答案】(1)当x=时,纸盒的侧面积的最大值为平方厘米;
(2)当a=b=60,x=10时纸盒的体积最大,最大值为16000立方厘米.
【解析】试题分析:(1)矩形纸板的面积为,故当时, ,列出关于纸盒侧面积函数解析式,利用二次函数的性质,即可求得最大值;
(2)列出盒子体积的函数解析式,利用导数求解函数的单调性、最值,即可得到结论。
试题解析:
(1)因为矩形纸板ABCD的面积为3600,故当a=90时,b=40,
从而包装盒子的侧面积
S=2×x(90-2x)+2×x(40-2x)
=-8x2+260x,x∈(0,20) .
因为S=-8x2+260x=-8(x-)2+,
故当x=时,侧面积最大,最大值为 平方厘米.
答:当x=时,纸盒的侧面积的最大值为平方厘米.
(2)包装盒子的体积
V=(a-2x)(b-2x) x=x[ab-2(a+b)x+4x2],x∈(0,),b≤60.
V=x[ab-2(a+b)x+4x2]≤x(ab-4x+4x2)
=x(3600-240x+4x2)
=4x3-240x2+3600x. 当且仅当a=b=60时等号成立.
设f (x)=4x3-240x2+3600x,x∈(0,30).
则f ′ (x)=12(x-10)(x-30).
于是当0<x<10时,f ′ (x)>0,所以f (x)在(0,10)上单调递增;
当10<x<30时,f ′ (x)<0,所以f (x)在(10,30)上单调递减.
因此当x=10时,f (x)有最大值f (10)=16000, 此时a=b=60,x=10.
答:当a=b=60,x=10时纸盒的体积最大,最大值为16000立方厘米.
【题目】据报道,巴基斯坦由中方投资运营的瓜达尔港目前已通航.这是一个可以停靠810万吨油轮的深水港,通过这一港口,中国船只能够更快到达中东和波斯湾地区,这相当于给中国平添了一条大动脉!在打造中巴经济走廊协议(简称协议)中,能源投资约340亿美元,公路投资约59亿美元,铁路投资约38亿美元,高架铁路投资约16亿美元,瓜达尔港投资约6.6亿美元,光纤通讯投资约为0.4亿美元.
有消息称,瓜达尔港的月货物吞吐量将是目前天津、上海两港口月货物吞吐量之和.表格记录了2015年天津、上海两港口的月吞吐量(单位:百万吨):
1月 | 2月 | 3月 | 4月 | 5月 | 6月 | 7月 | 8月 | 9月 | 10月 | 11月 | 12月 | |
天津 | 24 | 22 | 26 | 23 | 24 | 26 | 27 | 25 | 28 | 24 | 25 | 26 |
上海 | 32 | 27 | 33 | 31 | 30 | 31 | 32 | 33 | 30 | 32 | 30 | 30 |
(Ⅰ)根据协议提供信息,用数据说明本次协议投资重点;
(Ⅱ)从表中12个月任选一个月,求该月天津、上海两港口月吞吐量之和超过55百万吨的概率;
(Ⅲ)将(Ⅱ)中的计算结果视为瓜达尔港每个月货物吞吐量超过55百万吨的概率,设为瓜达尔未来12个月的月货物吞吐量超过55百万吨的个数,写出的数学期望(不需要计算过程).