搜索
题目内容
如图,在正方体ABCD-A
1
B
1
C
1
D
1
中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB
1
C,则线段EF的长度等于________.
试题答案
相关练习册答案
由于在正方体ABCD-A
1
B
1
C
1
D
1
中,AB=2,∴AC=2
.又E为AD中点,EF∥平面AB
1
C,EF?平面ADC,平面ADC∩平面AB
1
C=AC,∴EF∥AC,∴F为DC中点,
∴EF=
AC=
.
练习册系列答案
新世界新假期新世界出版社系列答案
创新学习暑假作业东北师范大学出版社系列答案
暑假作业长江出版社系列答案
义务教育课标教材暑假作业甘肃教育出版社系列答案
快乐暑假河北科学技术出版社系列答案
复习大本营期末假期复习一本通暑假系列答案
智多星创新达标快乐暑假新疆美术摄影出版社系列答案
快乐假期暑假作业内蒙古人民出版社系列答案
创新导学案新课标假期自主学习训练暑云南人民出版社系列答案
暑假作业海燕出版社系列答案
相关题目
如图几何体中,四边形ABCD为矩形,AB=3BC=6,EF =4,BF=CF=AE=DE=2, EF∥AB,G为FC的中点,M为线段CD上的一点,且CM =2.
(1)证明:平面BGM⊥平面BFC;
(2)求三棱锥F-BMC的体积V.
如图,在四棱锥
中,
⊥底面
,底面
为正方形,
,
,
分别是
,
的 中点.
(1)求证:
平面
;
(2)求证:
;
(3)若
是线段
上一动点,试确定
点位置,
使
平面
,并证明你的结论.
如图,在四棱锥
中,底面
是矩形,
平面
,
,
,
依次是
的中点.
(1)求证:
;
(2)求直线
与平面
所成角的正弦值.
如图,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=1,PD与平面ABCD所成角是30°,点F是PB的中点,点E在矩形ABCD的边BC上移动.
(Ⅰ)证明:无论点E在边BC的何处,都有PE⊥AF;
(Ⅱ)当CE等于何值时,二面角P-DE-A的大小为45°.
已知二面角α-AB-β为120°,AC?α,BD?β,且AC⊥AB,BD⊥AB,AB=AC=BD=a,则CD的长为______.
边长为4的正四面体P-ABC中,E为PA的中点,则平面EBC与平面ABC所成锐二面角的余弦值为______.
已知平面α,β和直线m,给出下列条件:①m∥α;②m⊥α;③m?α;④α⊥β;⑤α∥β.
(1)当满足条件________时,有m∥β;
(2)当满足条件________时,有m⊥β(填所选条件的序号).
如图,在三棱柱
中,侧棱垂直于底面,
,
,
、
分别为
、
的中点.
(1)求证:平面
平面
;
(2)求证:
平面
;
(3)求三棱锥
的体积.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总