题目内容

【题目】设函数f(x)=
(1)当m=4时,求函数f(x)的定义域M;
(2)当a,b∈RM时,证明:2|a+b|<|4+ab|.

【答案】
(1)解:当m=4时,由|x+1|+|x﹣1|≥4,

等价于

解得x≤﹣2或x≥2或x∈

则不等式的解集为M={x|x≤﹣2或x≥2}


(2)解:证明:当a,b∈CRM时,即﹣2<a,b<2,

所以4(a+b)2﹣(4+ab)2=4(a2+2ab+b2)﹣(16+8ab+a2b2

=4a2+4b2﹣16﹣a2b2=(a2﹣4)(4﹣b2)<0,所以4(a+b)2<(4+ab)2

即2|a+b|<|4+ab|


【解析】(1)由题意和二次根式的被开方数非负,可得|x+1|+|x﹣1|≥4,运用绝对值的意义和对x讨论,解不等式即可得到所求定义域;(2)可得﹣2<a,b<2,要证2|a+b|<|4+ab|,可证4(a+b)2<(4+ab)2 , 作差4(a+b)2﹣(4+ab)2 , 运用平方差和因式分解,即可得证.
【考点精析】利用函数的定义域及其求法对题目进行判断即可得到答案,需要熟知求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网