题目内容
【题目】已知函数,.
(1)讨论的单调性;
(2)若有两个极值点、,求的取值范围.
【答案】(1)见解析;(2).
【解析】
(1)求出函数的定义域和导数,对实数的取值进行分类讨论,利用导数分析导函数的符号变化,由此可得出函数的单调递增区间和递减区间;
(2)由(1)可知、是关于的二次方程的两根,利用韦达定理可将表示为以为自变量的函数,换元,可得出,令,利用导数求出函数在上的值域,由此可得解.
(1)函数的定义域为,
,令.
当,即时,,则对任意的恒成立,
此时函数在上单调递增;
当时,对任意的恒成立,
此时函数在上单调递增;
当时,有两个正根,分别为,,
当或时,;当时,.
此时函数在,上单调递增,在上单调递减.
综上可得:当时,函数的单调递增区间是,无递减区间;
当时,函数的单调递增区间是,,
单调递减区间是;
(2)由(1)可知、是关于的二次方程的两根,
由韦达定理可得,,,,,
,,,
,
令,则,设,
,
当时,,当时,.
所以,函数在单调递增,在单调递减,
,
因此,的取值范围是.
练习册系列答案
相关题目