题目内容
【题目】选修4-5:不等式选讲
已知函数.
(Ⅰ)若,解不等式;
(Ⅱ)当时,函数的最小值为,求实数的值.
【答案】(Ⅰ) (Ⅱ)
【解析】
(Ⅰ)a=-2时, ,f(x)的两个零点分别为-1和1,通过零点分段法分别讨论 ,去绝对值解不等式,最后取并集即可;
(Ⅱ)法一: 时, ,化简f(x)为分段函数,根据函数的单调性求出f(x)在 处取最小值3,进而求出a值。法二:先放缩,再由绝对值三角不等式求出f(x)最小值,进而求a。
(Ⅰ) 时,不等式为
①当 时,不等式化为,,此时
②当 时,不等式化为,
③当 时,不等式化为,,此时
综上所述,不等式的解集为
(Ⅱ)法一:函数f(x)=|2x-a|+|x-1|,当a<2,即时,
所以f(x)min=f()=-+1=3,得a=-4<2(符合题意),故a=-4.
法二:
所以,又,所以.
练习册系列答案
相关题目