题目内容
【题目】已知抛物线的焦点为F,过点F,斜率为1的直线与抛物线C交于点A,B,且.
(1)求抛物线C的方程;
(2)过点Q(1,1)作直线交抛物线C于不同于R(1,2)的两点D、E,若直线DR,ER分别交直线于M,N两点,求|MN|取最小值时直线DE的方程.
【答案】(1);(2).
【解析】
(1)过点F且斜率为的直线方程与抛物线的方程联立,利用求得的值,即可求得抛物线的方程;
(2)设D(x1,y1),E(x2,y2),直线DE的方程为,直线的方程为,由题意求出得值,建立的解析式,再求出的最小值以及直线的方程.
(1)抛物线的焦点为,
直线方程为:,
代入中,消去y得: ,
设A(x1,y1),B(x2,y2),则有,
由,得,即,解得,
所以抛物线C的方程为:;
(2)设D(x1,y1),E(x2,y2),直线DE的方程为,如图所示,
由,消去,整理得:,
∴,
设直线DR的方程为,
由,解得点M的横坐标,
又k1==,∴xM==-,
同理点N的横坐标,
=4,
∴|MN|=|xM-xN|=|-+|=2||==,
令,则,
∴|MN|==
所以当,即时,|MN|取最小值为,
此时直线DE的方程为.
【题目】近年来,网络电商已经悄然进入了广大市民的日常生活,并慢慢改变了人们的消费方式为了更好地服务民众,某电商在其官方APP中设置了用户评价反馈系统,以了解用户对商品状况和优惠活动的评价现从评价系统中随机抽出200条较为详细的评价信息进行统计,商品状况和优惠活动评价的2×2列联表如下:
对优惠活动好评 | 对优惠活动不满意 | 合计 | |
对商品状况好评 | 100 | 20 | 120 |
对商品状况不满意 | 50 | 30 | 80 |
合计 | 150 | 50 | 200 |
(I)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与商品状况好评之间有关系?
(Ⅱ)为了回馈用户,公司通过APP向用户随机派送每张面额为0元,1元,2元的三种优惠券用户每次使用APP购物后,都可获得一张优惠券,且购物一次获得1元优惠券,2元优惠券的概率分别是,,各次获取优惠券的结果相互独立若某用户一天使用了APP购物两次,记该用户当天获得的优惠券面额之和为X,求随机变量X的分布列和数学期望.
参考数据
P(K2≥k) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:K2,其中n=a+b+c+d