题目内容
已知函数(
是常数)在
处的切线方程为
,且
.
(1)求常数的值;
(2)若函数(
)在区间
内不是单调函数,求实数
的取值范围.
(1),
,
(2)
解析试题分析:(1)在处的切线切线斜率为
,由导数的几何意义可知
,将
代入切线方程可得
即
又因为
,解以上三个方程组成的方程组可得
的值。(2)由(1)可知函数
的解析式,从而可得函数
解析式。将其求导可得
,令
,可将问题转化为函数
在
内有极值,即
应有2个根(判别式应大于0),但在
内至少有一个根(故应分两种情况讨论)。因为
,所以
在
内有一个根时应有
,
在
内有两个根时应因为
,则
且顶点纵坐标小于0
(1)由题设知,的定义域为
,
,
因为在
处的切线方程为
,
所以,且
,即
,且
,
又 ,解得
,
,
(2)由(Ⅰ)知
因此,
所以
令.
(ⅰ)当函数在
内有一个极值时,
在
内有且仅有一个根,即
在
内有且仅有一个根,又因为
,当
,即
时,
在
内有且仅有一个根
,当
时,应有
,即
,解得
,所以有
.
(ⅱ)当函数在
内有两个极值时,
在
内有两个根,即二次函数
在
内有两个不等根,
所以,解得
.
综上,实数的取值范围是
练习册系列答案
相关题目