题目内容
【题目】已知三棱锥P-ABC(如图一)的平面展开图(如图二)中,四边形ABCD为边长等于的正方形,和均为正三角形,在三棱锥P-ABC中:
(1)证明:平面平面ABC;
(2)若点M在棱PA上运动,当直线BM与平面PAC所成的角最大时,求直线MA与平面MBC所成角的正弦值.
【答案】(1)见解析(2)
【解析】
(1) 设的中点为,连接.由展开图可知,,.为的中点,则有,根据勾股定理可证得,
则平面,即可证得平面平面.
(2) 由线面成角的定义可知是直线与平面所成的角,
且,最大即为最短时,即是的中点
建立空间直角坐标系,求出与平面的法向量利用公式即可求得结果.
(1)设AC的中点为O,连接BO,PO.
由题意,得,,.
在中,,O为AC的中点,,
在中,,,,,.
,平面,平面ABC,
平面PAC,平面平面ABC.
(2)由(1)知,,,平面PAC,
是直线BM与平面PAC所成的角,
且,
当OM最短时,即M是PA的中点时,最大.
由平面ABC,,
,,
于是以OC,OB,OD所在直线分别为x轴,y轴,z轴建立如图示空间直角坐标系,
则,
,
设平面MBC的法向量为,直线MA与平面MBC所成角为,
则由得:.
令,得,,即.
则.
直线MA与平面MBC所成角的正弦值为.
练习册系列答案
相关题目