题目内容
【题目】已知向量m=(cos,sin ),n=(2+sinx,2-cos),函数=m·n,x∈R.
(1) 求函数的最大值;
(2) 若 且 =1,求的值.
【答案】(1) f(x)的最大值是4 (2) -
【解析】
(1)先由向量的数量积坐标表示得到函数的三角函数解析式,再将其化简得到f(x)=4sin (x∈R),最大值易得;
(2)若 且=1,,解三角方程求出符合条件的x的三角函数值,再有余弦的和角公式求的值
(1)因为f(x)=m·n=cosx(2+sinx)+sinx·(2-cosx)
=2 (sinx+cosx)=4sin (x∈R),
所以f(x)的最大值是4.
(2)因为f(x)=1,所以sin=.
又因为x∈,即x+∈.
所以cos=-
cos=cos.
=coscos-sinsin
=-×-×=-.
练习册系列答案
相关题目