题目内容

【题目】已知向量m=(cos,sin ),n=(2+sinx,2-cos),函数m·nx∈R.

(1) 求函数的最大值;

(2) 若 =1,求的值.

【答案】(1) f(x)的最大值是4 (2) -

【解析】

(1)先由向量的数量积坐标表示得到函数的三角函数解析式,再将其化简得到f(x)=4sin (x∈R),最大值易得;
(2)若 =1,,解三角方程求出符合条件的x的三角函数值,再有余弦的和角公式求的值

(1)因为f(x)=m·n=cosx(2+sinx)+sinx·(2-cosx)

=2 (sinx+cosx)=4sin (x∈R),

所以f(x)的最大值是4.

(2)因为f(x)=1,所以sin.

又因为x,即x.

所以cos=-

cos=cos.

=coscos-sinsin

=-××=-.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网