题目内容
11.如图1,在矩形ABCD中,E,F分别是AB,CD的中点,沿EF将矩形BEFC折起,使∠CFD=90°,如图2所示;(Ⅰ)若G,H分别是AE,CF的中点,求证:GH∥平面ABCD;
(Ⅱ)若AE=1,∠DCE=60°,求三棱锥C-DEF的体积.
分析 (Ⅰ)由三角形中位线的性质证得PG∥CH,PG=CH,从而得到四边形CPGH为平行四边形,得到GH∥PC.然后利用线面平行的判定得答案;
(Ⅱ)由已知解三角形得到CF⊥DF,进一步求得EF=1,然后直接代入棱锥的体积公式得答案.
解答 (Ⅰ)证明:取AB中点P,连结PG、PC,
∵G,H分别是AE,CF的中点,
∴CH∥BE,且CH=$\frac{1}{2}$BE,PG∥BE,且PG=$\frac{1}{2}$BE,
∴PG∥CH,PG=CH,
∴四边形CPGH为平行四边形,
∴GH∥PC.
又GH?平面ABCD,PC?平面ABCD,
∴GH∥平面ABCD;
(Ⅱ)解:∵∠CFD=60°,∴CF⊥DF,
∵CF⊥EF,EF∩DF=F,
∴CF⊥平面ADEF,
又AE=EB,
∴CE=DE=$\sqrt{1+E{F}^{2}}$,且CF=DE=1,
∵∠DCE=60°,∴△DCE为等边三角形,
而Rt△CDF中,CD=$\sqrt{2}$,∴$\sqrt{1+E{F}^{2}}=\sqrt{2}$,
∴EF=1,
∴${V}_{C-DEF}=\frac{1}{3}×\frac{1}{2}EF•DF•CF=\frac{1}{6}$.
故三棱锥C-DEF的体积为$\frac{1}{6}$.
点评 本题主要考查直线与直线、直线与平面、平面与平面的位置关系及体积等基础知识;考查学生的空间想象能力、推理论证能力及运算求解能力,是中档题.
练习册系列答案
相关题目
1.若f(x)=sin(2x+θ),则“f(x)的图象关于x=$\frac{π}{3}$对称”是“θ=-$\frac{π}{6}$”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分又不必要条件 |
19.如图程序执行后输出的结果是( )
A. | 3 | B. | 6 | C. | 10 | D. | 15 |
16.已知函数f(x)=ex-mx+1的图象为曲线C,若曲线C存在与直线y=ex垂直的切线,则实数m的取值范围是( )
A. | (-∞,$\frac{1}{e}$) | B. | ($\frac{1}{e}$,+∞) | C. | ($\frac{1}{e}$,e) | D. | (e,+∞) |
3.下列命题中的假命题是( )
A. | ?x∈R,ex>0 | B. | ?x∈R,x2≥0 | C. | ?x0∈R,sinx0=2 | D. | ?x0∈R,2x0>x02 |
20.已知复数z满足(4+3i)z=25(i是虚数单位),则z的虚部为( )
A. | -3 | B. | 3 | C. | -$\frac{3}{5}$ | D. | $\frac{3}{5}$ |
1.已知等差数列{an}中,a1=1,an=70(n≥3).若{an}公差为某一自然数,则n的所有可能取值为( )
A. | 3,23,69 | B. | 4,24,70 | C. | 4,23,70 | D. | 3,24,70 |