题目内容
设0<x<π,则函数
的最小值是 ( )
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127584558.gif)
A.3 | B.2 | C.![]() | D.2-![]() |
C
解法一 因ysinx+cosx=2,故
.
由
,得
,于是
. 因0<x<π,故y>0.又当
时,
.若x=
,有
,故ymin=
,选C.
解法二 由已知得:ysinx =" 2" - cosx,于是y2(1-cos2x) = (2-cosx)2.
将上式整理得:(y2+1)cos2x-4cosx+4-y2=0.于是,⊿=16-4(y2+1)(4-y2)=4y2(y2-3)≥0.
因0<x<π,故y>0,于是y≥
,而当y=
时,⊿=0,cosx=
,x=
满足题设,于是ymin=
,选C.
解法三 设
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127896661.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127927365.gif)
,当且仅当
,即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127958200.gif)
,亦即x=
时,取“=”,故ymin=
,选C.
解法四 如图,单位圆中,∠MOt =
,P(2,0),M(cosx,sinx),
.
因
,故∠AOP=
,∠APt =
,
,从而,(kPM)min=
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231331281613102.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127630653.gif)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127646568.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127646458.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127662372.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127677374.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127693824.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127708234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127724595.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127599225.gif)
解法二 由已知得:ysinx =" 2" - cosx,于是y2(1-cos2x) = (2-cosx)2.
将上式整理得:(y2+1)cos2x-4cosx+4-y2=0.于是,⊿=16-4(y2+1)(4-y2)=4y2(y2-3)≥0.
因0<x<π,故y>0,于是y≥
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127599225.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127599225.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127771225.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127708234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127599225.gif)
解法三 设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127896455.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127896661.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127927365.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127927547.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127958351.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127958200.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127974529.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127708234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127599225.gif)
解法四 如图,单位圆中,∠MOt =
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133128036444.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133128052830.gif)
因
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133128067628.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133127708234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133128114268.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133128130690.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823133128145494.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231331281613102.jpg)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目