题目内容
4.无水AlCl3可用作有机合成的催化剂.利用铝土矿(主要成分是A12O3和Fe2O3)为原料制备无水AlCl3的工艺流程如下:(1)焙烧炉中发生反应的化学方程式为Fe2O3+3C$\frac{\underline{\;800℃\;}}{\;}$2Fe+3CO.
(2)氯化炉中生成AlCl3的反应中,被还原的元素是Cl;生成1mol AlCl3理论上至少需消耗16g焦炭.
(3)氯化铝在加热时易升华,气态氯化铝的分子式为Al2Cl6,由此判断AlCl3是共价(填“离子”或“共价”)化合物.升华器中主要含有AlCl3和FeCl3,需加入Al,其作用是除去FeCl3.
(4)AlCl3产品中Fe元素含量直接影响其品质,为测定产品中Fe元素的含量,现称取14.0g无水AlCl3样品,溶于过量的NaOH溶液,过滤出沉淀物,经洗涤、灼烧、冷却、称重,残留固体质量为0.32g.则产品中Fe元素的含量为1.6%.
分析 由工艺流程图可知,铝土矿与焦炭在焙烧炉中反应后物质为Al2O3、Fe及CO,应是Fe2O3与C反应生成Fe与CO,在氯化炉的产物中含有FeCl3、A1C13、CO,应是Al2O3与C反应生成Al与CO,Al、Fe与氯气反应生成AlCl3和FeCl3,升华器中主要含有AlCl3和FeCl3,升华制备无水AlCl3,加入少量Al目的是除去FeCl3.
(1)在焙烧炉中Fe2O3与C反应生成Fe与CO;
(2)元素化合价降低发生还原反应;氯化炉中生成氯化铝的总反应方程式为:A12O3+3C12+3C$\frac{\underline{\;高温\;}}{\;}$2A1C13+3CO,根据方程式计算消耗焦炭的质量;
(3)氯化铝在加热时易升华,沸点低,属于分子晶体,为共价化合物;升华器中主要含有AlCl3和FeCl3,升华制备无水AlCl3,应除FeCl3去;
(4)制备无水AlCl3含有杂质FeCl3,用过量的氢氧化钠溶液溶解,沉淀为氢氧化铁,最终残留固体质量为0.32g为Fe2O3,根据铁原子守恒计算Fe元素质量,进而计算产品中Fe元素的含量.
解答 解:由工艺流程图可知,铝土矿与焦炭在焙烧炉中反应后物质为Al2O3、Fe及CO,应是Fe2O3与C反应生成Fe与CO,在氯化炉的产物中含有FeCl3、A1C13、CO,应是Al2O3与C反应生成Al与CO,Al、Fe与氯气反应生成AlCl3和FeCl3,升华器中主要含有AlCl3和FeCl3,升华制备无水AlCl3,加入少量Al目的是除去FeCl3.
(1)在焙烧炉中Fe2O3与C反应生成Fe与CO,反应方程式为:Fe2O3+3C$\frac{\underline{\;800℃\;}}{\;}$2Fe+3CO,故答案为:Fe2O3+3C$\frac{\underline{\;800℃\;}}{\;}$2Fe+3CO;
(2)氯化炉中生成氯化铝的总反应方程式为:A12O3+3C12+3C$\frac{\underline{\;高温\;}}{\;}$2A1C13+3CO,Fe被氯气氧化为FeCl3,反应中Cl元素化合价降低,发生还原反应,由方程式可知,生成1mol AlCl3理论上需碳为1mol×$\frac{3}{2}$=1.5mol,故需要碳的质量至少为1.5mol×12g/mol=18g,
故答案为:Cl;18;
(3)氯化铝在加热时易升华,沸点低,属于分子晶体,为共价化合物;升华器中主要含有AlCl3和FeCl3,升华制备无水AlCl3,所以加入少量Al目的是除去FeCl3,
故答案为:共价;除去FeCl3;
(4)制备无水AlCl3含有杂质FeCl3,用过量的氢氧化钠溶液溶解,沉淀为氢氧化铁,最终残留固体质量为0.32g为Fe2O3,其物质的量为$\frac{0.32g}{160g/mol}$=0.002mol,故Fe元素质量为0.004mol×56g/mol=0.224g,则产品中Fe元素的含量为$\frac{0.224g}{14g}$×100%=1.6%,
故答案为:1.6%.
点评 本题考查物质制备方案、对于工艺流程原理的理解、物质含量的测定等,涉及常用化学用语书写、化学计算、分离提纯等,需要学生具备扎实的基础与综合运用能力,难度中等.
A. | 分液、蒸馏、萃取 | B. | 萃取、蒸发、分液 | C. | 分液、萃取、蒸馏 | D. | 蒸馏、萃取、分液 |
物质 | 熔点(℃) | 沸点(℃) | 密度(g•cm-3) |
乙醇 | -117.3 | 78.5 | 0.79 |
乙酸 | 16.6 | 117.9 | 1.05 |
乙酸乙酯 | -83.6 | 77.5 | 0.90 |
浓硫酸 | 338.0 | 1.84 |
①在30mL的大试管A中按体积比2:3:3配制浓硫酸、乙醇和乙酸的混合溶液.
②按图甲连接好装置(装置气密性良好),用小火均匀加热装有混合液的大试管5~10min.
③待试管B收集到一定量产物后停止加热,撤出试管B并用力振荡,然后静置待分层.
④分离出乙酸乙酯层,洗涤、干燥.
请根据题目要求回答下列问题:
(1)配制该混合液的主要操作步骤为在一个30mL的大试管中注入3mL乙醇,再分别缓缓加入2mL浓硫酸、3mL乙酸(乙醇和浓硫酸的加入顺序不可互换),边加边振荡试管使之混合均匀.
(2)步骤②中需要小火均匀加热,其主要原因是反应物乙醇、乙酸的沸点较低,若用大火加热,反应物随产物蒸出而大量损失,而且温度过高可能发生更多的副反应.
(3)指出步骤③所观察到的现象:在浅红色碳酸钠溶液液面上有无色油状液体生成,可闻到香昧,振荡后碳酸钠溶液红色变浅,油层变薄.
分离出乙酸乙酯层后,一般用饱和食盐水或饱和氯化钙溶液洗涤,可通过洗涤主要除去碳酸钠、乙醇(填名称)杂质;为了干燥乙酸乙酯可选用的干燥剂为B(填字母).
A.P2O5 B.无水Na2SO4C.碱石灰 D.NaOH固体
(4)某化学课外小组设计了如图乙所示的制取乙酸乙酯的装置(图中的部分装置略去),与图甲装置相比,图乙装置的主要优点有①增加了温度计,便于控制发生装置中反应液的温度,减少副产物的发生;②增加了分液漏斗,有利于及时补充反应混合液,以提高乙酸乙酯的产量;③增加了冷凝装置,有利于收集产物乙酸乙酯.
(1)已知:N2(g)+O2(g)=2NO(g)△H=+180.5kJ•mol-1
2C(s)+O2(g)=2CO(g)△H=-221.0kJ•mol-1
C(s)+O2(g)=CO2(g)△H=-393.5kJ•mol-1
①尾气转化的反应之一:2NO(g)+2CO(g)=N2(g)+2CO2(g)△H=-746.5 kJ•mol-1.该反应△S<0(填“>”、“<”或“=”),在低温(填“高温”“低温”或“任何温度”)下能自发进行.
②已知:分别断裂1mol N2、O2分子中化学键所需要的能量是946kJ、497kJ,则断裂1mol NO分子中化学键所需要的能量为631.25kJ.
(2)某研究性学习小组在技术人员的指导下,在某温度时,按下列流程探究某种催化剂作用下的反应速率,用气体传感器测得不同时间的NO和CO浓度如表:
汽车尾气→尾气分析仪→催化反应器→尾气分析仪
时间/s | 0 | 1 | 2 | 3 | 4 | 5 |
c(NO) (×10-4mol•L-1) | 10.0 | 4.50 | 2.50 | 1.50 | 1.00 | 1.00 |
c(CO) (×10-3mol•L-1) | 3.60 | 3.05 | 2.85 | 2.75 | 2.70 | 2.70 |
①前2s内的平均反应速率v(N2)=1.88×10-4 mol/(L•s).
②在该温度下,反应的平衡常数K=5000 L/mol.(写出计算结果)
③对于该可逆反应,通过综合分析以上信息,至少可以说明BC (填字母).
A.该反应的反应物混合后很不稳定
B.该反应体系达到平衡时至少有一种反应物的百分含量减小
C.该反应在一定条件下能自发进行
D.该反应使用催化剂意义不大
④研究表明:在使用等质量催化剂时,增大催化剂比表面积可提高化学反应速率.为了分别验证温度、催化剂比表面积对化学反应速率的影响规律,某同学设计了三组实验,部分实验条件已经填在下面实验设计表中,请在表格中填入剩余的实验条件数据.
实验编号 | T/℃ | NO初始浓度mol•L-1 | CO初始浓度mol•L-1 | 催化剂的比表面积m2•g-1 |
Ⅰ | 280 | 1.2×10-3 | 5.8×10-3 | 82 |
Ⅱ | 124 | |||
Ⅲ | 350 | 124 |
①负极的电极反应式为:CO+O2--2e-═CO2.
②工作时O2-由电极b流向电极a(填a或b)