题目内容
【题目】在压强为0.1MPa条件下,容积为V L的密闭容器中a mol CO与2a mol H2在催化剂作用下反应生成甲醇:CO(g)+2H2(g)CH3OH(g),CO的平衡转化率与温度、压强的关系如下图所示,则:
(1)①p1________p2(填“>”、“<”或“=”)。
②在其他条件不变的情况下,向容器中再增加a mol CO与2a mol H2,达到新平衡时,CO的平衡转化率________(填“增大”、“减小”或“不变”)。
③在p1下,100℃时,CO(g)+2H2(g)CH3OH(g)反应的平衡常数为______(用含a、V的代数式表示)。
(2)上图表示CO2与H2反应生成CH3OH和H2O的过程中能量(单位为kJmol﹣1)的变化,该反应的△H_________0,△S_______0。
(3)为探究反应原理,现进行如下实验,在体积为1L的密闭容器中,充入1mol CO2和3mol H2, 一定条件下发生反应:CO2(g)+3H2(g)CH3OH(g)+H2O(g),测得CO2(g)和CH3OH(g)的浓度随时间变化的曲线如图所示:
①从反应开始到平衡,CO2的平均反应速率v(CO2)=_________________________。
②下列措施中能使化学平衡向正反应方向移动的是________(填编号)。
A.升高温度
B.将CH3OH(g)及时液化移出
C.选择高效催化剂
D.再充入1mol CH3OH(g)和1mol H2O(g)
【答案】< 增大 < < B
【解析】
(1)①采用“定一议二”法,固定同一温度,探究压强对CO转化率的影响即可分析得到结果;②温度容积不变,同等比例的增大反应物,相当于加压;据此作答;③用字母表示出物质的量浓度,代入平衡常数表达式即可计算出结果;
(2)生成物的总能量小于反应物的总能量则H<0,气体的物质的量减小的反应则熵变S<0,据此分析;
(3)①据图得到浓度变化量代入速率公式即可;
②根据勒夏特列原理,平衡总是向着减弱这种改变的方向移动,据此分析;
(1)①相同温度下,同一容器中,增大压强,平衡向正反应方向移动,则CO的转化率增大,根据图像可知,P1<P2,故答案为:<;
②温度容积不变,向该容器内再增加amolCO与2amol H2,等效为开始加入2amol CO与4a molH2,同等比例的增大反应物,相当于加压,增大压强,平衡向气体体积减小的方向移动,即向正反应方向移动,则CO的转化率增大;
故答案为:增大;
③该温度下,平衡时n(CO)=amol×(1-0.5)=0.5amol, n(CH3OH)= n(CO)(参加反应)=amol×0.5=0.5amol,n(H2)=2amol-2×amol×0.5=amol, 、、,化学平衡常数 ;
故答案为: ;
(2)由图可知,生成物的总能量小于反应物的总能量,因此,该反应的H<0;该反应为气体的物质的量减小的反应,因此其熵变S<0;
故答案为:<;<;
(3) ① ,
故答案为:;
②A.反应是放热反应,升温平衡逆向进行;故A错误;
B.将CH3OH(g)及时液化抽出,减少生成物的量,平衡正向进行,故B正确;
C.选择高效催化剂只能改变化学反应速率,不改变化学平衡,故C错误;
D.再充入1mol CH3OH(g)和1mol H2O(g),增大了生成物浓度,平衡逆向移动;
故答案为:B;
【题目】I.(1) SiH4是一种无色气体,遇到空气能发生爆炸性自燃,生成SiO2(s)和H2O(l)。已知室温下2 g SiH4自燃放出的热量为89.2 kJ,则其热化学方程式为: _____________________。
(2)沼气是一种能源,它的主要成分是CH4,其燃烧的热化学方程式为:CH4(g)+2O2(g) = CO2(g)+2H2O(l ) ΔH=-890 kJ/mol,又已知H2O(l)=H2O(g) ΔH=+44 kJ/mol,则11.2 L(标准状况)CH4完全燃烧生成气态水时放出的热量为_______________。
Ⅱ.已知下列几种烷烃的燃烧热如下:
烷烃 | 甲烷 | 乙烷 | 丙烷 | 丁烷 | 戊烷 | 己烷 |
燃烧热/ (kJ·mol-1) | 890.3 | 1559.8 | 2219.9 | 2877.0 | 3536.2 | 4163.1 |
今有10 L(标准状况下)某种天然气,假设仅含甲烷和乙烷两种气体,燃烧时共放出热量480 kJ。
(1)试写出乙烷气体燃烧的热化学方程式___________________________________。
(2)计算该天然气中甲烷的体积分数____________(保留小数点后两位)。
(3)由上表可总结出的近似规律是______________________________________________。
(4)根据(3)的近似规律可预测癸烷的燃烧热约为______kJ·mol-1。