题目内容
【题目】求下列各式的值.
(1)sin 195°+cos 105°;
(2)cos(α-45°)cos(15°+α)+cos(α+45°)cos(105°+α).
【答案】(1)(2)
【解析】(1)原式=cos 105°+sin 195°
=cos 105°+sin(90°+105°)
=cos 105°+cos 105°
=2cos 105°=2cos(135°-30°)
=2×(cos 135°cos 30°+sin 135°sin 30°)
=2×
(2)原式=cos(α-45°)cos(15°+α)+sin(45°-α)cos(15°+90°+α)
=cos(α-45°)cos(15°+α)-sin(45°-α)sin(15°+α)
=cos(α-45°)cos(15°+α)+sin(α-45°)sin(15°+α)
=cos[(α-45°)-(15°+α)]
=cos(-60°)=cos 60°=.
练习册系列答案
相关题目