题目内容
如图所示,A、B重G A:G B=1:3,用甲、乙两滑轮组分别匀速提升A、B两物体,在相同时间内两物体被提升高度分别为hA和hB, 2hA=5hB。已知两滑轮组动滑轮重分别为G甲和G乙,且G甲? G乙=1?3。两滑轮组的机械效率分别为η1和η2,功率分别为P1和P2。若不计绳重和滑轮轴处摩擦,则下列判断正确的是
A.η1 :η2 =" 1" : 1 B.F1:F2=" 3" : 8
C.P1 :P 2 =" 5" :3 D.v A:vB ="2" : 5
A.η1 :η2 =" 1" : 1 B.F1:F2=" 3" : 8
C.P1 :P 2 =" 5" :3 D.v A:vB ="2" : 5
A
试题分析:知道两图提升物体重的大小关系和动滑轮重的大小关系,利用F=(G物+G轮)求拉力的大小关系;又知道提升高度的关系,利用s=nh求拉力端移动距离的大小关系,利用效率公式求两图效率之比;求出了拉力之比、拉力移动距离之比,利用W=Fs求拉力做功之比,因为是在相同的时间内,可求拉力做功功率之比;知道在相同时间内两物体被提升高度关系,利用速度公式可得两物体移动速度的大小关系。
由题知,GA:GB=1:3,G甲:G乙=1:3.
设GA=G,G甲=G′,则GB=3G,G乙=3G′,
∵不计绳重和滑轮轴处摩擦,
∴F1=(GA+G甲)=(G+G′),
F2=(GB+G乙)=(3G+3G′),
∴F1:F2=(G+G′):(3G+3G′)=1:6,故B错;
η1= = = ,
η2= = = ,
∴η1:η2=: = × = × = ×=1:1,故A正确;
拉力移动距离之比:
sA:sB=4hA:2hB = = =5:1,
拉力做功之比:
W1:W2=F1sA:F2sB= = =5:6;
∵做功时间相同,
∴功率之比:
P1:P2=W1:W2=5:6,故C错;
两物体移动速度之比:
vA:vB=:=hA:hB=5:2,故D错。
故选A。
点评:本题中了解速度的计算、功率的计算、使用滑轮组拉力的计算、机械效率的计算,根据题图确定n的大小(直接从动滑轮上引出的绳子股数)是本题的突破口。
练习册系列答案
相关题目