【题目】如图,△ABC是一张锐角三角形的硬纸片.AD是边BC上的高,BC=40cm,AD=30cm.从这张硬纸片剪下一个长HG是宽HE的2倍的矩形EFGH.使它的一边EF在BC上,顶点G,H分别在AC,AB上.AD与HG的交点为M.
(1)求证:;
(2)求这个矩形EFGH的周长.
【题目】如图,四边形ABCD为菱形,M为BC上一点,连接AM交对角线BD于点G,并且∠ABM=2∠BAM.
(1)求证:AG=BG;
(2)若点M为BC的中点,同时S△BMG=1,求三角形ADG的面积.
【题目】如图,已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的点P处,折痕与BC交于点O.
(1)求证:△OCP∽△PDA;
(2)若PO:PA=1:2,则边AB的长是多少?
【题目】如图,在ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是( )
A. ①②③④ B. ①④ C. ②③④ D. ①②③
【题目】如图,四边形为平行四边形,平分交于点,过点作,交于点,连接.
(1)求证:平分;
(2)若,四边形与四边形相似,求的长.
【题目】如图,G是正方形ABCD对角线AC上一点,作GE⊥AD,GF⊥AB,垂足分别为点E、F.
求证:四边形AFGE与四边形ABCD相似.
【题目】一个四边形被一条对角线分割成两个三角形,如果被分割的两个三角形相似,我们被称为该对角线为相似对角线.
(1)如图1,正方形的边长为4,E为的中点,,连结.,求证:为四边形的相似对角线.
(2)在四边形中,,,,平分,且是四边形的相似对角线,求的长.
(3)如图2,在矩形中,,,点E是线段(不取端点A.B)上的一个动点,点F是射线上的一个动点,若是四边形的相似对角线,求的长.(直接写出答案)
【题目】如图,点是线段上的任意一点(点不与点重合),分别以为边在直线的同侧作等边三角形和等边三角形,与相交于点,与相交于点.
(1)求证: ;
(2)求证: ;
(3)若的长为12cm,当点在线段上移动时,是否存在这样的一点,使线段的长度最长?若存在,请确定点的位置并求出的长;若不存在,请说明理由.
【题目】如图,矩形中,,,点是边上一定点,且.
(1)当时,上存在点,使与相似,求的长度.
(2)对于每一个确定的的值上存在几个点使得与相似?
【题目】如图,点是反比例函数图象上的一点,过点作轴于点,连接,的面积为2.点的坐标为.若一次函数的图象经过点,交双曲线的另一支于点,交轴点.
(1)求反比例函数和一次函数的解析式;
(2)若为轴上的一个动点,且的面积为5,请求出点的坐标.