【题目】如图1,已知是等腰直角三角形,,点D是BC的中点作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.
试猜想线段BG和AE的数量关系是______;
将正方形DEFG绕点D逆时针方向旋转,
判断中的结论是否仍然成立?请利用图2证明你的结论;
若,当AE取最大值时,求AF的值.
【题目】已知二次函数y=﹣x2+bx+c的图象经过A(2,0),B(0,﹣6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数图象的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积和周长.
【题目】如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A按逆时针方向旋转得到的,连接BE、CF相交于点D.
(1)求证:BE=CF;
(2)当四边形ABDF为菱形时,求CD的长.
【题目】已知关于x的方程x2﹣(m﹣2)x﹣=0.
(1)求证:无论m为何值,方程总有两个不相等实数根.
(2)设方程的两实数根为x1,x2,且满足(x1+x2)2=|x1|﹣|x2|+2,求m的值.
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,过点(0,1)和(﹣1,0),给出以下结论:①ab<0;②4a+c<1+b2;③0<c+b+a<2;④0<b<2;⑤当x>﹣1时,y>0;⑥8a+7b+2c﹣9<0其中正确结论的个数是( )
A.6B.5C.4D.3
【题目】在平面直角坐标系中,已知抛物线经过A(﹣2,0),B(0,﹣2),C(1,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;
(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
【题目】如图①,BC是⊙O的直径,点A在⊙O上,AD⊥BC垂足为D,弧AE=弧AB,BE分别交AD、AC于点F、G.
(1)判断△FAG的形状,并说明理由;
(2)如图②若点E与点A在直径BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变(1)中的结论还成立吗?请说明理由.
(3)在(2)的条件下,若BG=26,DF=5,求⊙O的直径BC.
【题目】如图,在△ABC中,BC的垂直平分线分别交BC、AC于点D、E,BE交AD于点F,AB=AD.
(1)判断△FDB与△ABC是否相似,并说明理由;
(2)BC=6,DE=2,求△BFD的面积.
【题目】市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=45时,y=10;x=55时,y=90.在销售过程中,每天还要支付其他费用500元.
(1)求出y与x的函数关系式,并写出自变量x的取值范围;
(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;
(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?
【题目】如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.
(1)求证:直线DF与⊙O相切;
(2)求证:BF=EF;