【题目】如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣2,3),B(﹣3,2),C(﹣1,1).
(1)若将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1;
(2)画出△A1B1C1绕原点顺时针旋90°后得到 的△A2B2C2;
(3)若△A′B′C′与△ABC是中心对称图形,则对称中心的坐标为 .
【题目】今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.
抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.
(1)该班男生“小刚被抽中”是 事件,“小悦被抽中”是 事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为 ;
(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.
【题目】已知二次函数和一次函数的图象如图所示,下面四个推断:
①二次函数有最大值
②二次函数的图象关于直线对称
③当时,二次函数的值大于0
④过动点且垂直于x轴的直线与的图象的交点分别为C,D,当点C位于点D上方时,m的取值范围是或,其中正确的有( )
A.1个B.2个C.3个D.4个
【题目】如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则( )
A. DE=EB B. DE=EB C. DE=DO D. DE=OB
【题目】如图,四边形是矩形,点、在坐标轴上, 是绕点顺时针旋转得到的,点在轴上,直线交轴于点,交于点,线段,.
(1)求直线的解析式;
(2)求的面积;
(3)点在轴上,平面内是否存在点,使以点、、、为顶点的四边形是矩形?若存在,请直接写出点的坐标;若不存在,请说明理由.
【题目】如图,点O为矩形ABCD的对称中心,AB=4cm,BC=6cm,点E、F、G 分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点G的运动速度为2cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s).
(1)若点F的运动速度为2 cm/s.
①当t=______s时,四边形EBFB′为正方形;
②若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;
(2)若存在实数t,使得点B′与点O重合,求出t的值;并求出点F的运动速度.
【题目】如图,在△ABC中,DE∥BC,EF∥AB.
(1)求证:△ADE∽△EFC;
(2)如果AB=6,AD=4,求的值.
【题目】某博物馆每周都吸引大量中外游客前来参观,如果游客过多,对馆中的珍贵文物会产生不利影响,但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入,因此,博物馆采取了涨浮门票价格的方法来控制参观人数,在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系.在这种情况下,如果要保证每周万元的门票收入,那么每周应限定参观人数是多少?门票价格应是多少.
【题目】求证:相似三角形对应角的角平分线之比等于相似比.要求:
①分别在给出的△ABC与△DEF中用尺规作出一组对应角的平分线,不写作法,保留作图痕迹;
②在完成作图的基础上,写出已知、求证,并加以证明.
【题目】如图,某中学准备在校园里利用院墙的一段再围三面篱笆,形成一个矩形花园(院墙长米),现有米长的篱笆. (篱笆必须用完)
(1)设AB=x米,则BC= 米
(2)请你设计一下围法,使矩形花园的面积为米.