【题目】如图1所示,六个小朋友围成一圈(面向圈内)做传球游戏,规定:球不得传给自己,也不得传给左手边的人.若游戏中传球和接球都没有失误.
若由开始一次传球,则和接到球的概率分别是 、 ;
若增加限制条件:“也不得传给右手边的人”.现在球已传到手上,在下面的树状图2中
画出两次传球的全部可能情况,并求出球又传到手上的概率.
【题目】如图是抛物线的部分图象,其顶点为,与轴交于点,与轴的一个交点为,连接.以下结论:①;②抛物线经过点;③;④当时, .其中正确的是( )
A.①③B.②③C.①④D.②④
【题目】如图,点是中边的中点,于,以为直径的经过,连接,有下列结论:①;②;③;④是的切线.其中正确的结论是( )
A.①②B.①②③C.②③D.①②③④
【题目】二次函数中与的部分对应值如下表所示,则下列结论错误的是( )
A.
B.当时,的值随值的增大而减小
C.当时,
D.方程有两个不相等的实数根
【题目】如图,四边形中,平分.
(1)求证:;
(2)求证:点是的中点;
(3)若,求的长.
【题目】黄山景区销售一种旅游纪念品,已知每件进价为元,当销售单价定为元时,每天可以销售件.市场调查反映:销售单价每提高元,日销量将会减少件.物价部门规定:销售单价不低于元,但不能超过元,设该纪念品的销售单价为(元),日销量为(件).
(1)直接写出与的函数关系式.
(2)求日销售利润(元)与销售单价(元)的函数关系式.并求当为何值时,日销售利润最大,最大利润是多少?
【题目】如图,在淮河的右岸边有一高楼,左岸边有一坡度的山坡,点与点在同一水平面上,与在同一平面内.某数学兴趣小组为了测量楼的高度,在坡底处测得楼顶的仰角为,然后沿坡面上行了米到达点处,此时在处测得楼顶的仰角为,求楼的高度.(结果保留整数)(参考数)
【题目】在△ABC中,∠ABC=90°,已知AB=3,BC=4,点Q是线段AC上的一个动点,过点Q作AC的垂线交直线AB于点P,当△PQB为等腰三角形时,线段AP的长为 .
【题目】如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直
线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则
y关于x的函数图象大致形状是【 】
【题目】如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.
(1)求该抛物线的解析式;
(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;
(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.