【题目】如图,在矩形ABCD中,已知 AD>AB.在边AD上取点E,连结CE.过点E作EF⊥CE,与边AB的延长线交于点F.
(1)证明:△AEF∽△DCE.
(2)若AB=3,AE =4,AD=10,求线段BF的长.
【题目】如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为a,则平行四边形ABCD的面积为 ▲ (用a的代数式表示).
【题目】如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,过点B的直线交x轴于C,且面积为10.
(1)求点C的坐标及直线BC的解析式;
(2)如图1,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;
(3)如图2,若M为线段BC上一点,且满足,点E为直线AM上一动点,在x轴上是否存在点D,使以点D、E、B、C为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.
【题目】如图1,在中,,点D、E分别在边上,连接DE,且.
(1)问题发现:若,则______________________.
(2)拓展探究:若,将饶点C按逆时针旋转度,图2是旋转过程中的某一位置,在此过程中的大小有无变化?如果不变,请求出的值,如果变化,请说明理由;
(3)问题解决:若,将旋转到如图3所示的位置时,则的值为______________.(用含的式子表示)
【题目】如图,在矩形ABCD中,E为CD上一点,若△ADE沿直线AE翻折,使点D落在BC边上点处,F为AD上一点,且,EF与BD相交于点G,与BD相交于点H,,HG=2,则BD=__________.
【题目】已知:在坐标平面内,三个顶点的坐标为,(正方形网格中,每个小正方形边长为1个单位长度).
(1)画出向下平移4个单位得到的;
(2)以B为位似中心,在网格中画出,使与位似,且位似比,直接写出点坐标是_____________________;
(3)的面积是______________平方单位.
【题目】如图,平面内的两条直线l1、l2,点A、B在直线l2上,过点A、B两点分别作直线l1的垂线,垂足分别为A1、B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T(AB,l2),特别地,线段AC在直线l2上的正投影就是线段A1C,请依据上述定义解决如下问题.
(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)= ;
(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积;
(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD).
【题目】为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.
(1)八(1)班抽中歌曲《我和我的祖国》的概率是__________;
(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
【题目】如图,在四边形ABCD中,对角线BD平分,,E为BC的中点,AE与BD相交于点F,若,则BF的长为( )
A.B.C.D.
【题目】 如图,直线交轴于点,交轴于点,抛物线经过点,交轴于点.点为抛物线上一动点,过点作轴的垂线,交直线于点,设点的横坐标为.
(1)求抛物线的解析式;
(2)当点在直线下方的抛物线上运动时,求线段长度的最大值;
(3)若点是平面内任意一点,是否存在点,使以,,,为顶点的四边形为菱形?若存在,请直接出的值;若不存在,请说明理由.