【题目】△ABC中,AB=AC=5,BC=6,过AB上一点D作DE‖BC,DF‖AC分别交AC、BC于点E和F
(1)如图1,证明:△ADE∽△DBF;
(2)如图1,若四边形DECF是菱形,求DE的长;
(3)如图2,若以D、E、F为顶点的三角形与△BDF相似,求AD的长.
【题目】如图,在矩形ABCD中,点E是AD的中点,连结BE,且BE⊥AC交AC于点F.
(1)求证:△EAB∽△ABC;
(2)若AD=2,求AB的长;
(3)在(2)的条件下,求DF的长.
【题目】如图,正方形ABCD中,M为BC上一点,F是AM上一点,EF⊥AM,垂足为F,交AD延长线于点E,交DC于点N.
(1)求证:△ABM∽△EFA;
(2)若AB=12,BM=6,F为AM的中点,求DN的长;
(3)若AB=12,DE=1,BM=5,求DN的长.
【题目】如图,一路灯距地面6.4米,身高1.6米的小方从距离灯的底部(点O)5米的A处,沿OA所在的直线行走到点C时,人影长度增长3米,
求:(1)小方在A处时的影子AB的长;(2)小方行走的路程AC.
【题目】如图,将平行四边形ABCD绕点D旋转,点C落在BC上的点H处,点B恰好落在点A处,得平行四边形DHAE,若BH=2,CH=3,则DC=_____.
【题目】如图,在平面直角坐标系中,已知Rt△AOB的两条直角边0A、08分别在y轴和x轴上,并且OA、OB的长分别是方程x2—7x+12=0的两根(OA<0B),动点P从点A开始在线段AO上以每秒l个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.
(1)求A、B两点的坐标。
(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.
(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.
【题目】如图,长方形纸片ABCD中,AB=8,将纸片折叠,折痕的一个端点F在边AD上,另一个端点G在边BC上,顶点B的对应点为E.
(1)如图(1),当顶点B的对应点E落在边AD上时.
①连接BF,试判断四边形BGEF是怎样的特殊四边形,并说明理由;
②若BG=10,求折痕FG的长;
(2)如图(2),当顶点B的对应点E落在长方形内部,E到AD的距离为2,且BG=10时,求AF的长.
【题目】已知,如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在边BC上以每秒1个单位长的速度由点C向点B运动.
(1)当t为何值时,四边形PODB是平行四边形?
(2)在线段PB上是否存在一点Q,使得ODQP为菱形?若存在,求t的值;若不存在,请说明理由;
(3)△OPD为等腰三角形时,写出点P的坐标(不必写过程).
【题目】 为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有两种型号的健身器可供选择.
(1)劲松公司2015年每套型健身器的售价为万元,经过连续两年降价,2017年每套售价为 万元,求每套型健身器年平均下降率 ;
(2)2017年市政府经过招标,决定年内采购并安装劲松公司两种型号的健身器材共套,采购专项费总计不超过万元,采购合同规定:每套型健身器售价为万元,每套型健身器售价我 万元.
①型健身器最多可购买多少套?
②安装完成后,若每套型和型健身器一年的养护费分别是购买价的 和 .市政府计划支出 万元进行养护.问该计划支出能否满足一年的养护需要?
【题目】中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对七年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:
(1)统计表中的a=________,b=___________,c=____________;
(2)请将频数分布表直方图补充完整;
(3)求所有被调查学生课外阅读的平均本数;
(4)若该校七年级共有1200名学生,请你分析该校七年级学生课外阅读7本及以上的人数.