【题目】在下面16×8的正方形网格中,每个小正方形的边长为1个单位,△ABC是格点三角形(顶点在网格交点处),请你画出:
(1)△ABC关于点P的位似△A′B′C′,且位似比为1:2;
(2)以A.B.C.D为顶点的所有格点平行四边形ABCD的顶点D
.
【题目】如图,矩形AOBC的顶点坐标分别为A(0,3),O(0,0),B(4,0),C(4,3),动点F在边BC上(不与B.C重合),过点F的反比例函数y=的图象与边AC交于点E,直线EF分别与y轴和x轴相交于点D和G.给出下列命题:①若k=4,则△OEF的面积为;②若k=,则点C关于直线EF的对称点在x轴上;③满足题设的k的取值范围是0<k≤12;④若DEEG=,则k=1.其中正确的命题的序号是____________(填序号).
【题目】如图,已知点D在⊙O的直径AB延长线上,点C在⊙O上,过点D作ED⊥AD,与AC的延长线相交于点E,且CD=DE.
(1)求证:CD为⊙O的切线;
(2)若AB=12,且BC=CE时,求BD的长.
【题目】某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有 人;
(2)请你将条形统计图(2)补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
【题目】如图,抛物线y=-x2+bx+c与直线AB交于A(-4,-4),B(0,4)两点,直线AC:y=-x-6交y轴与点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.
(1)求抛物线y=-x2+bx+c的表达式;
(2)连接GB、EO,当四边形GEOB是平行四边形时,求点G的坐标;
(3)①在y轴上存在一点H,连接EH、HF,当点E运动到什么位置时,以A、E、F、H为顶点的四边形是矩形?求出此时点E、H的坐标;
②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM的最小值.
【题目】如图,在菱形ABCD中,点P是BC边上一动点,连结AP,AP的垂直平分线交BD于点G,交 AP于点E,在P点由B点到C点的运动过程中,∠APG的大小变化情况是( )
A. 变大 B. 先变大后变小 C. 先变小后变大 D. 不变
【题目】如图,在菱形ABCD中,已知∠BAD=120°,对角线BD长为12.
(1)求菱形ABCD的周长;
(2)动点P从点A出发,沿A→B的方向,以每秒1个单位的速度向点B运动;在点P出发的同时,动点Q从点D出发,沿D→C→B的方向,以每秒2个单位的速度向点B运动.设运动时间为t(s).
①当PQ恰好被BD平分时,试求t的值;
②连接AQ,试求:在整个运动过程中,当t取怎样的值时,△APQ恰好是一个直角三角形?
【题目】如图,已知二次函数y=ax2-4ax+c的图像交x轴于A、B两点(其中A点在B点的左侧),交y轴于点C(0,3).
(1)若tan∠ACO=,求这个二次函数的表达式;
(2)若OC为OA、OB的比例中项.
①设这个二次函数的顶点为P,求△PBC的面积;
②若M为y轴上一点,N为平面内一点,问:是否存在这样的M、N,使得以M、N、B、C为顶点的四边形为矩形?若存在,请直接写出所有符合条件的点N的坐标;若不存在,请说明理由.
【题目】如图,在Rt△ABC中,∠C=90°,O为斜边AB上一点,以O为圆心、OA为半径的圆恰好与BC相切于点D,与AB的另一个交点为E,连接DE.
(1)请找出图中与△ADE相似的三角形,并说明理由;
(2)若AC=3,AE=4,试求图中阴影部分的面积;
(3)小明在解题过程中思考这样一个问题:如图中的⊙O的圆心究竟是怎么确定的呢?请你在如图中利用直尺和圆规找到符合题意的圆心O,并写出你的作图方法.
【题目】如图,已知矩形OABC的顶点A在x轴的负半轴上,顶点C在y轴上,且AB=4.P为OC上一点,将△BCP沿PB折叠,点C落在第三象限内点Q处,BQ与x轴的交点M恰好为OA的中点,且MQ=1.
(1)求点A的坐标;
(2)求折痕PB所对应的函数表达式.