【题目】某项工程需要将一批水泥运送到施工现场,现有甲、乙两种货车可以租用.已知2辆甲种货车和3辆乙种货车一次可运送37吨水泥,1辆甲种货车和4辆乙种货车一次可运送36吨水泥.
(1)求每辆甲种货车和每辆乙种货车一次分别能装运多少吨水泥?
(2)已知甲种货车每辆租金为500元,乙种货车每辆租金为450元,该企业共租用8辆货车.请求出租用货车的总费用(元)与租用甲种货车的数量(辆)之间的函数关系式.
(3)在(2)的条件下,为了保障能拉完这批水泥,发现甲种货车不少于4辆,请你为该企业设计如何租车费用最少?并求出最少费用是多少元?
【题目】正比例函数y=x的图象与反比例函数的图象有一个交点的纵坐标是2,求:
(1)x=﹣3时反比例函数的值;
(2)当﹣3<x<﹣1时反比例函数y的取值范围.
【题目】为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.
(1)抽查D厂家的零件为 件,扇形统计图中D厂家对应的圆心角为 ;
(2)抽查C厂家的合格零件为 件,并将图1补充完整;
(3)通过计算说明合格率排在前两名的是哪两个厂家.
【题目】甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,折线BCD表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,根据图象解答下列问题:
(1)求线段CD对应的函数关系式;
(2)在轿车追上货车后到到达乙地前,何时轿车在货车前30千米.
【题目】崂山区某班全体同学参加了为一名因工受伤女教师捐款的活动,该班同学捐款情况的部分统计图如图所示:
(1)求该班的总人数;
(2)将条形图补充完整,并写出捐款金额的众数;
(3)该班平均每人捐款多少元?
【题目】多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )
A.极差是47B.众数是42
C.中位数是58D.每月阅读数量超过40的有4个月
【题目】如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.
【题目】如图,在△ABC中,AB=50cm,BC=30cm,AC=40cm.
(1)求证:∠ACB=90°
(2)求AB边上的高.
(3)点D从点B出发在线段AB上以2cm/s的速度向终点A运动,设点D的运动时间为t(s).
①BD的长用含t的代数式表示为 .
②当△BCD为等腰三角形时,直接写出t的值.
【题目】(1)教材呈现:下图是华师版八年级上册数学教材第94页的部分内容.
定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.
定理应用:
(2)如图②,在中,直线、分别是边、的垂直平分线,直线、的交点为.过点作于点.求证:.
(3)如图③,在中,,边的垂直平分线交于点,边的垂直平分线交于点.若,,则的长为_____________.
【题目】如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(结果都保留根号)
(1)求点P到海岸线l的距离;
(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.