【题目】如图,在中,为边上的一动点(点不与、两点重合).交于点,交于点.
下列条件中:①;②是的中线;③是的角平分线;④是的高,请选择一个满足的条件,使得四边形为菱形,并证明;
答:我选择________.(填序号)
在选择的条件下,再满足条件:________,四边形即成为正方形.
【题目】探究:如图①,在四边形中,,,于点.若,求四边形的面积.
应用:如图②,在四边形中,,,于点.若,,,则四边形的面积为________.
【题目】如图A,B,D在同一条直线上,∠A=∠D=90°,AB=DE,∠BCE=∠BEC,
(1)求证:△ACB≌△DBE
(2)求证:CB⊥BE
【题目】下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.
解:设x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
= y2+8y+16 (第二步)
=(y+4)2 (第三步)
=(x2-4x+4)2 (第四步)
回答下列问题:
(1)该同学第二步到第三步运用了因式分解的_______.
A.提取公因式 B.平方差公式 C.两数和的完全平方公式 D.两数差的完全平方公式
(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”)
若不彻底,请直接写出因式分解的最后结果_________.
(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.
【题目】如图,△ABC中,AD⊥BC于D,若BD=AD,FD=CD.
(1)求证:∠FBD=∠CAD;
(2)求证:BE⊥AC.
【题目】如图,在△ABC和△DEF中,满足AB=DE,∠B=∠E,如果要判定这两个三角形全等,那么添加的条件不正确的是( )
A. ∠A=∠D B. ∠C=∠F C. BC=EF D. AC=DF
【题目】如图,已知直线y=x+5与x轴交于点A,直线y=﹣x+b与x轴交于点B(1,0),且这两条直线交于点C.
(1)求直线BC的解析式和点C的坐标;
(2)直接写出关于x的不等式x+5>﹣x+b的解集.
【题目】如图,已知直线与x轴交于点A,与直线交于点B.
(1)求点A、B两点的坐标;
(2)直接写出y1>y2时x的取值范围.
【题目】已知:在矩形中,,,四边形的三个顶点、、分别在矩形边、、上,.
如图,当四边形为正方形时,求的面积;
如图,当四边形为菱形时,设,的面积为,求关于的函数关系式,并写出函数的定义域.
【题目】如图,正方形中,点是上任意一点,以为边作正方形.
①连接,求证:;
②连接,猜想的度数,并证明你的结论;
③设点在线段上运动,,正方形的面积为,正方形的面积为,试求与的函数关系式,并写出的取值范围.