【题目】把两块含45°角的直角三角板按图1所示的方式放置,点D在BC上,连结BE、AD,AD的延长线交BE于点F.(1)如图1,求证:BE=AD,AF⊥BE;(2)将△ABC绕点C顺时针旋转(如图2),连结BE、AD,AD分别交BE、BC于点F、G,那么(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由.
【题目】已知∠AOB,点M、N,在∠AOB的内部求作一点P.使点P到∠AOB的两边距离相等,且PM=PN(要求:尺规作图,保留作图痕迹,不写作法).
【题目】如图,OB为∠AOC的平分线,OD是∠COE的平分线.
(1)如果∠AOB=40°,∠DOE=30°,那么∠BOD为多少度?
(2)如果∠AOE=140°,∠COD=30°,那么∠AOB为多少度?
【题目】若(x2+y2)2-2(x2+y2)-3=0,则x2+y2=_____.
【题目】先化简,再求值
5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣2,b=3.
【题目】已知抛物线与x轴交点A(1,0),B(-3,0) .与y轴交点B(0,3),如图1所示,D为抛物线的顶点。
(1)求抛物线的解析式;
(2)如图1若R为y轴上的一个动点,连接AR,则RB+AR的最小值为
(3)在x轴上取一动点P(m,0),,过点P作x轴的垂线,分别交抛物线、CD、CB于点Q、F、E,如图2所示,求证EF=EP.
(4)设此抛物线的对称轴为直线MN,在直线MN上取一点T,使∠BTN=∠CTN.直接写出点T的坐标。
【题目】观察探究及应用.
(1)观察图形并填空:
一个四边形有________条对角线;
一个五边形有________条对角线;
一个六边形有________对角线;
一个七边形有________对角线;
(2)分析探究:
由凸n边形的一个顶点出发,可作_________条对角线,多边形有n个顶点,若允许重复计数,共可作_______条对角线;
(3)结论:
一个凸n边形有条对角线;
(4)应用:
一个凸十二边形有多少条对角线?
【题目】某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32,对于这组数据,众数是_____,中位数是_____,极差是_____.
【题目】在如图的方格纸中,每个小正方形的边长都为l,△ABC的顶点坐标分别为A(﹣4,4)、B(﹣2,3)、C(﹣3,1). (1)在图中画出与△ABC关于y轴对称的△A1B1C1 , 并直接写出△A1B1C1的三个顶点坐标;(2)画出将△A1B1C1向下平移4格得到的△A2B2C2 , 并直接写出△A2B2C2的三个顶点坐标.
【题目】如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12cm2 , 则图中阴影部分的面积是cm2 .