题目内容
【题目】如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于点C,且OC=OA
(1)求抛物线解析式;
(2)过直线AC上方的抛物线上一点M作y轴的平行线,与直线AC交于点N.已知M点的横坐标为m,试用含m的式子表示MN的长及△ACM的面积S,并求当MN的长最大时S的值.
【答案】(1)y=﹣x2﹣2x+3;(2)MN=﹣m2﹣3m;S=﹣m2﹣m;当m=﹣时,MN最大,此时S=.
【解析】
(1)先求出点C坐标,再运用待定系数法求解即可;
(2)先求出直线AC的解析式,用m表示点M,N的坐标,即可表示线段MN的长度;根据S△ACM=S△AMN+S△CMN即可用m表示S△ACM;运用二次函数分析MN最值即可;
解:(1)由A(﹣3,0),且OC=OA可得C(0,3)
设抛物线解析式为y=a(x+3)(x﹣1),
将C(0,3)代入解析式得,﹣3a=3,解得a=﹣1,
∴抛物线解析式为y=﹣x2﹣2x+3.
(2)如图,
设直线AC解析式为y=kx+d
∵A(﹣3,0),C(0,3),
∴,
解得 ,
∴直线AC解析式为y=x+3,
设M(m,﹣m2﹣2m+3),则N(m,m+3),则MN=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m(﹣3<m<0),
S△ACM=S△AMN+S△CMN=MN×3=﹣m2﹣m,
MN=﹣m2﹣3m=﹣(m+)2+,
∵a=﹣1<0,﹣3<m=﹣1.5<0,
∴m=﹣时,MN最大,此时S=.
【题目】某市射击队打算从君君、标标两名运动员中选拔一人参加省射击比赛,射击队对两人的射击技能进行了测评.在相同的条件下,两人各打靶5次,成绩统计如下:
(1)填写下表:
平均数(环) | 中位数(环) | 方差(环2) | |
君君 |
| 8 | 0.4 |
标标 | 8 |
|
|
(2)根据以上信息,若选派一名队员参赛,你认为应选哪名队员,并说明理由.
(3)如果标标再射击1次,命中8环,那么他射击成绩的方差会 .(填“变大”“变小”或“不变”)