题目内容
【题目】如图,已知△ABC内接于⊙O,直径AD⊥BC于E,点F是OE的中点,且BD∥CF.
(1)若BD=3,求BC的长.
(2)若BD平分∠CBP,求证:ABBD=BPAF.
【答案】(1)BC=2;(2)证明见解析.
【解析】
(1)由直径AD⊥BC,根据垂径定理得到E为BC中点,又BD与CF平行,得到两对内错角相等,从而利用“AAS”得到三角形BDE与三角形CFE全等,根据全等三角形的对应边相等得到DE=EF,设ED=EF=x,由已知F为OE中点,得到OE=2EF=2x,OD=OA=3x,则AD=6x,再由直径AB所对的圆周角为直角得到∠ABD=90°,又根据垂直定义得到∠AEB=90°,故两个角相等,再根据∠BED为公共角,利用两对对应角相等的两三角形相似得到△ABD∽△BED,由相似得比例列出关于x的方程,求出方程的解即可得到x的值,即可求出BD和DE,在直角三角形BDE中,利用勾股定理求出BE的长,进而求出BC的长;
(2)连接BF,根据AB为圆的直径,得到其所对的圆周角为直角,根据直角三角形两锐角互余得到∠BAD+∠ADB=90°又根据AD与BC垂直根据垂直定义得到一个直角,同理可得∠DBE+∠ADB=90°,根据同角的余角相等得到∠BAD=∠DBE,根据角平分线定义得到∠PBD=∠DBE,利用等量代换得到∠BAD=∠PBD,由(1)可知BE垂直平分FD,故BF=BD,根据“等边对等角”得到∠BFD=∠BDF,再根据等角的邻补角相等得到一对角相等,由两对对应角相等的两三角形相似,得到△ABF∽△BPD,由相似得比例变形后得证.
解:(1)∵直径AD⊥BC于E,
由垂径定理得:BE=CE,
又∵BD∥CF,
∴∠ECF=∠EBD,∠EFC=∠EDB,
∴△BED≌△CEF,
∴DE=EF,
设DE=EF=x,
又∵点F是OE的中点,
∴OE=2EF=2x,OD=OA=3x,AD=6x,
∵AD是⊙O直径,
∴∠ABD=90°,
又AD⊥BC,∴∠AEB=90°,
∴∠ABD=∠AEB,又∠BDE=∠BDE,
∴△ABD∽△BED,
∴,即,
解得:x=,
在直角三角形BDE中,
根据勾股定理得:BE=,
则BC=2BE=2;
(2)连接BF,AB,
∵AD是⊙O直径,
∴∠ABD=90°,
∴∠BAD+∠ADB=90°
又AD⊥BC,∴∠AEB=90°,
∴∠DBE+∠ADB=90°,
∴∠BAD=∠DBE,
又∵BD平分∠CBP,
∴∠PBD=∠DBE,
∴∠BAD=∠PBD,
由(1)可知:DE=EF,且AD⊥BC,
∴BE是DF的垂直平分线,
∴BF=BD,
∴∠BFD=∠BDF,
∴∠AFB=∠BDP,
∴△ABF∽△BPD,
∴,即ABBD=BPAF.
【题目】某工厂要加工甲、乙、丙三种型号机械配件共120个,安排20个工人刚好一天加工完成,每人只加工一种配件,设加工甲种配件的人数为x,加工乙种配件的人数为y,根据下表提供的信息,解答下列问题:
配件种类 | 甲 | 乙 | 丙 |
每人每天加工配件的数量个 | 8 | 6 | 5 |
每个配件获利元 | 15 | 14 | 8 |
求y与x之间的关系.
若这些机械配件共获利1420元,请求出加工甲、乙、丙三种型号配件的人数分别是多少人?
【题目】某食品厂生产一种半成品食材,产量百千克与销售价格元千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:
销售价格元千克 | 2 | 4 | 10 | |
市场需求量百千克 | 12 | 10 | 4 |
已知按物价部门规定销售价格x不低于2元千克且不高于10元千克
求q与x的函数关系式;
当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值范围;
当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃若该半成品食材的成本是2元千克.
求厂家获得的利润百元与销售价格x的函数关系式;
当厂家获得的利润百元随销售价格x的上涨而增加时,直接写出x的取值范围利润售价成本