题目内容
【题目】已知数轴上有A、B、C三点,分别表示有理数-26、-10、10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.
(1)用含t的代数式表示P到点A和点C的距离:PA=________,PC=_____________
(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离。(友情提醒:注意考虑P、Q的位置)
【答案】(1) t ;36-t;
(2)当16≤t≤24时 PQ=﹣2t+48
当24<t≤28时 PQ=2t-48
当28<t≤30时 PQ= 120﹣4t
当30<t≤36时 PQ= 4t﹣120
【解析】
试题(1)根据P点位置进而得出PA,PC的距离;
(2)分别根据P点与Q点相遇前以及相遇后进而分别分析得出即可.
试题解析:(1)PA=t,PC=36-t;(2)当16≤t≤24时PQ=t-3(t-16)=-2t+48,当24<t≤28时PQ=3(t-16)-t=2t-48,当28<t≤30时PQ=72-3(t-16)-t=120-4t,当30<t≤36时PQ=t-[72-3(t-16)]=4t-120.
练习册系列答案
相关题目
【题目】已知二次函数y=x2﹣2x﹣3.
(1)将y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;
(2)与y轴的交点坐标是 , 与x轴的交点坐标是;
(3)在坐标系中利用描点法画出此抛物线.
x | … | … | |||||
y | … | … |
(4)不等式x2﹣2x﹣3>0的解集是 .