题目内容
【题目】如图,在正方ABCD中,E是AB边上任一点,BG⊥CE,垂足为O,交AC于点F,交AD于点G.
(1)证明:BE=AG;
(2)E位于什么位置时,∠AEF=∠CEB?说明理由.
【答案】(1)见解析;(2)当点E位于线段AB中点时,∠AEF=∠CEB ,理由见解析
【解析】
(1) 根据正方形的性质利用ASA判定△GAB≌△EBC,根据全等三角形的对应边相等可得到AG=BE;
(2) 利用SAS判定△GAF≌△EAF,从而得到∠AGF=∠AEF,由△GAB≌△EBC可得到∠AGF=∠CEB,则∠AEF=∠CEB.
(1)证明:∵四边形ABCD是正方形
∴∠ABC=∠BAD=90°,∴∠1+∠3=90°,
∵BG⊥CE,∴∠BOC=90°∴∠2+∠3=90°,
∴∠1=∠2,
在△GAB和△EBC中,
∵∠GAB=∠EBC=90°,AB=BC,∠1=∠2,
∴△GAB≌△EBC (ASA) ,
∴AG=BE;
(2)解:当点E位于线段AB中点时,∠AEF=∠CEB ,
理由如下:若当点E位于线段AB中点时,则AE=BE,
由(1)可知,AG=BE,
∴AG=AE,
∵四边形ABCD是正方形,
∴∠GAF=∠EAF=45°,
又∵AF=AF,
∴△GAF≌△EAF (SAS),
∴∠AGF=∠AEF,
由(1)知,△GAB≌△EBC,
∴∠AGF=∠CEB,
∴∠AEF=∠CEB.
【题目】我市某中学举行“中国梦校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.
(1)根据图示填写下表;
平均数(分) | 中位数(分) | 众数(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.