题目内容
【题目】如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2).
(1)请在图中作出△ABC关于y轴的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直写出D、E、F的坐标.
(2)求四边形ABED的面积.
【答案】(1)图见解析;D(-2,3),E(-3,1),F(2,-2) (2)10
【解析】
(1)首先确定A、B、C的关于y轴的对称点D、E、F的位置,再顺次连接即可,然后写出D、E、F的坐标;
(2)根据梯形的面积公式,即可求解.
(1)如图所示:△DEF即为所求三角形,由图形可知:D(-2,3),E(-3,1),F(2,-2);
(2)连接AD,BE,
∵AD∥BE,
∴四边形ABED是梯形,
∴四边形ABED的面积=.
【题目】从2开始,连续的偶数相加,它们和的情况如下表:
加数的个数n | S |
1 | 2=1×2 |
2 | 2+4=6=2×3 |
3 | 2+4+6=12=3×4 |
4 | 2+4+6+8=20=4×5 |
5 | 2+4+6+8+10=30=5×6 |
(1)若n=8时,则S的值为_____________.
(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=__________________.
(3)根据上题的规律计算2+4+6+8+10+…+98+100的值.
【题目】如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如正三角形就是等边三角形,正四边形就是正方形,如下图,就是一组正多边形,
(1)观察上面每个正多边形中的∠α,填写下表:
正多边形边数 | 3 | 4 | 5 | 6 | …… | n |
∠α的度数 | ______° | _____° | ______° | ______° | …… | _____° |
(2)根据规律,计算正八边形中的∠α的度数.
(3)是否存在正n边形使得∠α=21°?若存在,请求出n的值,若不存在,请说明理由.
【题目】问题:探究函数的图象与性质.
小华根据学习函数的经验,对函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:
在函数中,自变量可以是任意实数;
(1)下表是与的几组对应值.
… | -3 | -2 | -1 | 0 | 1 | 2 | 3 | … | |
… | 1 | 0 | -1 | -2 | -1 | 0 | … |
①______;
②若,为该函数图象上不同的两点,则______;
(2)如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象;
(3)根据函数图象可得函数的性质:
①该函数的最小值为______;
②再写出该函数一条性质____________.