题目内容

【题目】为实施“农村留守儿童关爱计划”,某校对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成了如下两幅不完整的统计图:
(1)将该条形统计图补充完整;
(2)求该校平均每班有多少名留守儿童?
(3)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.

【答案】
(1)解:该校班级个数为4÷20%=20(个),

只有2名留守儿童的班级个数为:20﹣(2+3+4+5+4)=2(个),

补图如下:


(2)解:该校平均每班留守儿童的人数为:

(1×2+2×2+3×3+4×4+5×5+6×4)÷20=4(个);


(3)解:由(1)得只有2名留守儿童的班级有2个,共4名学生,设A1,A2来自一个班,B1,B2来自一个班,如图;

由树状图可知,共有12种可能的情况,并且每种结果出现的可能性相等,其中来自一个班的共有4种情况,

则所选两名留守儿童来自同一个班级的概率为: =


【解析】(1)根据留守儿童有6名的班级占20%,可求得有留守儿童的总班级数,再减去其它班级数,即可补全统计图;(2)根据班级个数和班级人数,求出总的留守儿童数,再除以总班级数,即可得出答案;(3)根据(1)可知,只有2名留守儿童的班级有2个,共4名学生,再设A1 , A2来自一个班,B1 , B2来自一个班,列出树状图可得出来自一个班的共有4种情况,再根据概率公式即可得出答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网