题目内容
【题目】已知,梯形ABCD中,AB∥CD,BC⊥AB,AB=AD,连接BD(如图a),点P沿梯形的边,从点A→B→C→D→A移动,设点P移动的距离为x,BP=y.
(1)求证:∠A=2∠CBD;
(2)当点P从点A移动到点C时,y与x的函数关系如图(b)中的折线MNQ所示,试求CD的长.
(3)在(2)的情况下,点P从A→B→C→D→A移动的过程中,△BDP是否可能为等腰三角形?若能,请求出所有能使△BDP为等腰三角形的x的取值;若不能,请说明理由.
【答案】(1)见解析;(2)1;(3)△BDP可能为等腰三角形,能使△BDP为等腰三角形的x的取值为:0或3或5﹣或或10或9+.
【解析】
(1)根据等腰三角形两个底角相等可以进一步证明∠A=2∠CBD,
(2) 根据题意描述,可以确定AB=5,AB+BC=8,再通过作DE⊥AB于来构造直角三角形可以求出CD长度.
(3) 根据题目描述分情况来讨论哪个点为等腰三角形顶点,进而列方程进行求出P点位置情况.
(1)证明:∵AB∥CD,BC⊥AB,AB=AD,
∴∠ABD=∠CDB,∠A+∠ADC=180°,∠ABD+∠CBD=90°,∠ABD=∠ADB,
∴∠A+2∠ABD=180°,2∠ABD+2∠CBD=180°,
∴∠A=2∠CBD;
(2)解:由图(b)得:AB=5,AB+BC=8,
∴BC=3,作DE⊥AB于E,如图所示:
则DE=BC=3,CD=BE,
∵AD=AB=5,
∴AE==4,
∴CD=BE=AB﹣AE=1;
(3)解:可能;理由如下:
分情况讨论:
①点P在AB边上时,
当PD=PB时,P与A重合,x=0;
当DP=DB时,BP=2BE=2,
∴AP=3,
∴x=3;
当BP=BD==时,AP=5﹣,
即x=5﹣;
②点P在BC上时,存在PD=PB,
此时,x=5+=;
③点P在AD上时,
当BP=BD=时,x=5+3+1+2=10;
当DP=DB=时,x=5+3+1+=9+;
综上所述:△BDP可能为等腰三角形,能使△BDP为等腰三角形的x的取值为:0或3或5﹣或或10或9+.
【题目】请同学们完成下列甲,乙两种商品从包装到销售的一系列问题;
(1)某包装车间有22名工人,每人每小时可以包装120个甲商品或者200个乙商品,且1个甲商品需要搭配2个乙商品装箱,为使每天包装的甲商品和乙商品刚好配置,应安排包装甲商品和乙商品的工人各多少名?
(2)某社区超市第一次用6000元购进一批甲、乙两种商品,其中甲商品的件数比乙商品件数的2倍少30件,两种商品的进价和售价如下图所示:
甲 | 乙 | |
进价(元/件) | 22 | 30 |
售价(元/件) | 29 | 40 |
①超市将这批货全部售出一共可以获利多少元?
②该超市第二次分别以第一次同样的进价购进第二批甲、乙两种商品,其中乙商品的件数是第一批乙商品件数的3倍,甲商品的件数不变,甲商品按照原售价销售,乙商品在原价的基础上打折销售,第二批商品全部售出后获得的总利润比第一批获得的总利润多720元,求第二批乙商品在原价基础上打几折销售?
【题目】中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书“,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
本数(本) | 频数(人数) | 频率 |
5 | a | 0.2 |
6 | 18 | 0.36 |
7 | 14 | b |
8 | 8 | 0.16 |
合计 | 50 | c |
我们定义频率=,比如由表中我们可以知道在这次随机调查中抽样人数为50人课外阅读量为6本的同学为18人,因此这个人数对应的频率就是=0.36.
(1)统计表中的a、b、c的值;
(2)请将频数分布表直方图补充完整;
(3)求所有被调查学生课外阅读的平均本数;
(4)若该校八年级共有600名学生,你认为根据以上调查结果可以估算分析该校八年级学生课外阅读量为7本和8本的总人数为多少吗?请写出你的计算过程.