题目内容
【题目】如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.
(1)求证:OM=ON.
(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.
【答案】(1)证明见解析(2)2
【解析】
(1)由正方形ABCD可知∠OAM=∠OBN,OA=OB,∠AOM=∠BON进而可知△OAM≌△OBN即可证明OM=ON
(2),如图,过点O作OH⊥AD于点H,可知OH=HA,由已知可求出HM的长,通过勾股定理可知OM长进而即可求出MN的长.
(1)∵四边形ABCD是正方形,
∴OA=OB,∠DAO=45°,∠OBA=45°,
∴∠OAM=∠OBN=135°,
∵∠EOF=90°,∠AOB=90°,
∴∠AOM=∠BON,
∴△OAM≌△OBN(ASA),
∴OM=ON;
(2)如图,过点O作OH⊥AD于点H,
∵正方形的边长为4,
∴OH=HA=2,
∵E为OM的中点,
∴HM=4,
则OM==2,
∴MN=OM=2.
练习册系列答案
相关题目