题目内容

【题目】如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x轴,且满足(a+b)2+ =0.

(1)求三角形ABC的面积.
(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.
(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.

【答案】
(1)解:∵(a+b)2≥0, ≥0,

∴a=﹣b,a﹣b+4=0,

∴a=﹣2,b=2,

∵CB⊥AB

∴A(﹣2,0),B(2,0),C(2,2)

∴三角形ABC的面积= ×4×2=4


(2)解:∵CB∥y轴,BD∥AC,

∴∠CAB=∠ABD,

∴∠3+∠4+∠5+∠6=90°,

过E作EF∥AC,

∵BD∥AC,

∴BD∥AC∥EF,

∵AE,DE分别平分∠CAB,∠ODB,

∴∠3=∠4=∠1,∠5=∠6=∠2,

∴∠AED=∠1+∠2= ×90°=45°


(3)解:存在.理由如下:

设P点坐标为(0,t),直线AC的解析式为y=kx+b,

把A(﹣2,0)、C(2,2)代入得

解得

∴直线AC的解析式为y= x+1,

∴G点坐标为(0,1),

∴SPAC=SAPG+SCPG= |t﹣1|2+ |t﹣1|2=4,解得t=3或﹣1,

∴P点坐标为(0,3)或(0,﹣1).


【解析】(1)根据非负数的性质得到a=﹣b,a﹣b+4=0,解得a=﹣2,b=2,则A(﹣2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2= ×90°=45°;(3)先根据待定系数法确定直线AC的解析式为y= x+1,则G点坐标为(0,1),然后利用SPAC=SAPG+SCPG进行计算.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网