题目内容
【题目】水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.为了保证每天至少售出260斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?
(3)当每斤的售价定为多少元时,每天获利最大?最大值为多少?
【答案】(1)100+200x;
(2)张阿姨需将每斤的售价降低1元;
(3)当每斤的售价定为元时,每天获利最大,最大值为元.
【解析】
试题分析:(1)销售量=原来销售量+下降销售量,据此列式即可;
(2)根据销售量×每斤利润=总利润列出方程求解即可;
(3)设每斤的售价降低x元,每天获利为y元,根据题意得到y=﹣200(x﹣)2+,根据二次函数的性质即可得到结论.
试题解析:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x(斤);
故答案为:100+200x;
(2)根据题意得:(4﹣2﹣x)(100+200x)=300,
解得:x=或x=1,
当x=时,销售量是100+200×=200<260;
当x=1时,销售量是100+200=300(斤).
∵每天至少售出260斤,
∴x=1.
答:张阿姨需将每斤的售价降低1元;
(3)设每斤的售价降低x元,每天获利为y元,
根据题意得:y=(4﹣2﹣x)(100+200x)=﹣200x2+300x+200=﹣200(x﹣)2+,
答:当每斤的售价定为元时,每天获利最大,最大值为元.
练习册系列答案
相关题目