题目内容
【题目】在Rt△ABC中,∠C=90°,AC=6,BC=8,点D、E分别是斜边AB和直角边BC上的点,把△ABC沿着直线DE折叠,顶点B的对应点是点B′.
(1)如图①,如果点B′和点A重合,求CE的长.
(2)如图②,如果点B′落在直角边AC的中点上,求BE的长.
【答案】(1)CE的长为;(2)BE=.
【解析】
(1)如图(1),设CE=x,则BE=8﹣x;根据勾股定理列出关于x的方程,解方程即可解决问题;
(2)如图(2),首先求出CB′=3;类比(1)中的解法,设出未知数,列出方程即可解决问题.
(1)如图(1),设CE=x,则BE=8﹣x;
由题意得:AE=BE=8﹣x
由勾股定理得:x2+62=(8﹣x)2,
解得:x=,
即CE的长为:;
(2)如图(2),
∵点B′落在AC的中点,
∴CB′=AC=3;
设CE=x,类比(1)中的解法,可列出方程:x2+32=(8﹣x)2
解得:x=.
即CE的长为:,
∴BE==.
练习册系列答案
相关题目
【题目】为了更好的治理西流湖水质,保护环境,市治污公司决定购买 10 台污水处理设备.现有 A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:
A 型 | B 型 | |
价格(万元/台) | a | b |
处理污水量(吨/月) | 240 | 200 |
经调查:购买一台 A 型设备比购买一台 B 型设备多 2 万元,购买 2 台 A 型设备比购买 3 台 B 型设备少 6 万元.
(1)求 a,b 的值;
(2)经预算:市治污公司购买污水处理设备的资金不超过 105 万元,你认为该公司 有哪几种购买方案;
(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于 2040 吨,为了节 约资金,请你为治污公司设计一种最省钱的购买方案.