题目内容

【题目】如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据: ≈1.73, ≈1.41.

【答案】解:∵∠BEC=60°,∠BDE=30°,
∴∠DBE=60°﹣30°=30°,
∴BE=DE=20,
在Rt△BEC中,
BC=BEsin60°=20× =10 ≈17.3(米),
∴AB=BC﹣AC=17.3﹣12=5.3(米),
答:旗杆AB的高度为5.3米
【解析】首先根据三角形外角的性质可得∠DBE=60°﹣30°=30°,根据等角对等边可得BE=DE,然后在Rt△BEC中,根据三角形函数可得BC=BEsin60°,进而可得BC长,然后可得AB的长.此题主要考查了解直角三角形的应用,关键是证明BE=DE,掌握三角形函数定义.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网