题目内容
【题目】如图,CD⊥AB,EF⊥AB,垂足分别为D、F,∠1=∠2,若∠A=65°,∠B=45°,求∠AGD的度数.
【答案】70°
【解析】
由CD⊥AB,EF⊥AB可得出∠CDF=∠EFB=90°,利用“同位角相等,两直线平行”可得出CD∥EF,利用“两直线平行,同位角相等”可得出∠DCB=∠1,结合∠1=∠2可得出∠DCB=∠2,利用“内错角相等,两直线平行”可得出DG∥BC,利用“两直线平行,同位角相等”可得出∠ADG的度数,在△ADG中,利用三角形内角和定理即可求出∠AGD的度数.
解:∵CD⊥AB,EF⊥AB,
∴∠CDF=∠EFB=90°,
∴CD∥EF,
∴∠DCB=∠1.
∵∠1=∠2,
∴∠DCB=∠2,
∴DG∥BC,
∴∠ADG=∠B=45°.
又∵在△ADG中,∠A=65°,∠ADG=45°,
∴∠AGD=180°﹣∠A﹣∠ADG=70°
练习册系列答案
相关题目