题目内容
【题目】问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC是等边三角形,点D是BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线于点E.试探究AD与DE的数量关系.
操作发现:(1)小明同学过点D作DF∥AC交AB于F,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD与DE的数量关系,并进行证明.
类比探究:(2)如图2,当点D是线段BC上任意一点(除B、C外),其他条件不变,试猜想AD与DE之间的数量关系,并证明你的结论.
拓展应用:(3)当点D在线段BC的延长线上,且满足CD=BC,在图3中补全图形,直接判断△ADE的形状(不要求证明).
【答案】(1)AD=DE,见解析;(2)AD=DE,见解析;(3)见解析,△ADE是等边三角形,
【解析】
(1)根据题意,通过平行线的性质及等边三角形的性质证明即可得解;
(2)根据题意,通过平行线的性质及等边三角形的性质证明即可得解;
(3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.
(1)如下图,数量关系:AD=DE.
证明:∵是等边三角形
∴AB=BC,
∵DF∥AC
∴,∠BDF=∠BCA
∴
∴是等边三角形,
∴DF=BD
∵点D是BC的中点
∴BD=CD
∴DF=CD
∵CE是等边的外角平分线
∴
∵是等边三角形,点D是BC的中点
∴AD⊥BC
∴
∵
∴
在与中
∴
∴AD=DE;
(2)结论:AD=DE.
证明:如下图,过点D作DF∥AC,交AB于F
∵是等边三角形
∴AB=BC,
∵DF∥AC
∴
∴
∴是等边三角形,
∴BF=BD
∴AF=DC
∵CE是等边的外角平分线
∴
∵∠ADC是的外角
∴
∵
∴∠FAD=∠CDE
在与中
∴
∴AD=DE;
(3)如下图,是等边三角形.
证明:∵
∴
∵CE平分
∴CE垂直平分AD
∴AE=DE
∵
∴是等边三角形.