题目内容
如图,已知:△ABC为边长是的等边三角形,四边形DEFG为边长是6的正方形.现将等边△ABC和正方形DEFG按如图1的方式摆放,使点C与点E重合,点B、C(E)、F在同一条直线上,△ABC从图1的位置出发,以每秒1个单位长度的速度沿EF方向向右匀速运动,当点C与点F重合时暂停运动,设△ABC的运动时间为t秒(t≥0).
(1)在整个运动过程中,设等边△ABC和正方形DEFG重叠部分的面积为S,请直接写出S与t之间的函数关系式;
(2)如图2,当点A与点D重合时,作∠ABE的角平分线BM交AE于M点,将△ABM绕点A逆时针旋转,使边AB与边AC重合,得到△ACN.在线段AG上是否存在H点,使得△ANH为等腰三角形.如果存在,请求出线段EH的长度;若不存在,请说明理由.
(3)如图3,若四边形DEFG为边长为的正方形,△ABC的移动速度为每秒
个单位长度,其余条件保持不变.△ABC开始移动的同时,Q点从F点开始,沿折线FG﹣GD以每秒
个单位长度开始移动,△ABC停止运动时,Q点也停止运动.设在运动过程中,DE交折线BA﹣AC于P点,则是否存在t的值,使得PC⊥EQ,若存在,请求出t的值;若不存在,请说明理由.
(1)
(2)见解析
(3)见解析
解析试题分析:(1)分两种情况利用三角形的面积公式可以表示出时重叠部分的面积,当
时用S△ABC﹣
就可以求出重叠部分的面积.
(2)当点A与点D重合时,,再由条件可以求出AN的值,分三种情况讨论求出EH的值,①AN=AH=4时,②AN=NH=4时,此时H点在线段AG的延长线上,③AH=NH时,此时H点为线段AG的中垂线与AG的交点,从而可以求出答案.
(3)再运动中当0≤t<2时,如图2,△PEC∽△EFQ,可以提出t值;当2≤t≤4时,如图3,△PEC∽△QDF,可以提出t值.
解:(1)当时,
当时,
.
(2)当点A与点D重合时,,
∵BM平分∠ABE,
∴
∴ME=2,
∵∠ABM=∠BAM,
∴AM=BM=4,
∵△ABM≌△ACN,
∴∠CAN=30°,AN=4
①AN=AH=4时,,
②AN=NH=4时,此时H点在线段AG的延长线上,∴舍去,
③AH=NH时,此时H点为线段AG的中垂线与AG的交点,如图1,
∴,
∴.
(3)当0≤t<2时,如图2,△PEC∽△EFQ,
∴,
∴,
∴;
当2≤t≤4时,如图3,△PEC∽△QDE,
∴,
∴,
∴
∴,
∴t1=4,.
点评:本题考查了求函数的解析式,正方形的性质,全等三角形的判定与性质,等腰三角形的性质,等边三角形的性质,勾股定理的运用.
![](http://thumb.zyjl.cn/images/loading.gif)
若反比例函数y=的图象经过点(m,3m),其中m≠0,则此反比例函数的图象在
A.第一、二象限 | B.第一、三象限 |
C.第二、四象限 | D.第三、四象限 |
根据下图所示程序计算函数值,若输入的x的值为,则输出的函数值为 ( )
A.![]() | B.![]() | C.![]() | D.![]() |